Antonie van Leeuwenhoek

, Volume 82, Issue 1–4, pp 303–321 | Cite as

Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application

  • Aidan Coffey
  • R. Paul Ross


Starter inhibition by bacteriophage infection in dairy fermentations can limit the usage of specific bacterial strains used in the manufacture of Cheddar, Mozzarella and other cheeses and can result in substantial economic losses. A variety of practical measures to alleviate the problem of phage infection have been adopted over the years but has invariably resulted in a very limited number of strains which can withstand intensive usage in industry. The application of genetic techniques to improve the phage-resistance of starter cultures for dairy fermentations has been intensively studied for the last 20 years to a point where this approach now has significant potential to alleviate the problem. This paper highlights the recent findings and developments that have been described in the literature that will have an impact on improvement of the phage-resistance of starter cultures.

bacteriophage starter culture cheese phage-resistance restriction-modification abortive infection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann H-W& DuBow MS (1987) Bacteriophage taxonomy. In: Viruses of Prokaryotes, Vol. 1 (pp 1–11). CRC Press, Boca Raton, FL.Google Scholar
  2. Akçelik M (1999) A phage DNA injection-blocking type resistance mechanism encoded by chromosomal DNA in Lactococcus lactis subsp. lactis PLM-18. Milchwissenschaft 53: 619–622.Google Scholar
  3. Allison GE& Klaenhammer TR (1998) phage-resistance mechanisms in lactic acid bacteria. Int. Dairy J. 8: 207–226.Google Scholar
  4. Anba J, Bidnenko E, Hillier A, Ehrlich SD& Chopin M-C (1995) Characterisation of the lactococcal abiD1 gene coding for phage abortive infection. J. Bacteriol. 177: 3818–3823.Google Scholar
  5. Batt CA, Erlandson K& Bsat N (1995) Design and implementation of a strategy to reduce bacteriophage infection of dairy starter cultures. Int. Dairy J. 5: 949–962.Google Scholar
  6. Benbadis L, Garel JR& Hartley DL (1991) Purification, properties and sequence specificity of SslI, a new typeII restriction endonuclease from Streptococcus salivarius ssp. thermophilus. Appl. Environ. Microbiol. 57: 3677–3678.Google Scholar
  7. Bester BH& Lombard SH (1975) Protection of starter cultures against bacteriophages by propagation in a phage-resistant medium. South African J. Dairy Technol. 7: 235–240.Google Scholar
  8. Bickle TA& Kruger DH (1993) Biology of DNA restriction. Microbiol. Rev. 57: 434–450.Google Scholar
  9. Bidnenko E, Ehrlich SD& Chopin M-C (1995) Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. J. Bacteriol. 177: 3824–3829.Google Scholar
  10. Bissonnette F, Labrie S, Deveau H, Lamoureux M& Moineau S (2000) Characterization of mesophilic mixed starter cultures used for the manufacture of aged Cheddar cheese. J. Dairy Sci. 83: 620–627.Google Scholar
  11. Bolotin A, Mauger S, Malarme K, Ehrlich SD& Sorokin A (1999) Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Van Leeuwenhoek 76: 27–76.Google Scholar
  12. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD& Sorokin A. (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.Google Scholar
  13. Bouchard JD& Moineau S (2000) Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 270: 65–75.Google Scholar
  14. Bouchard JD, Dion E& Moineau S. (2000) Characterization of a novel phage-resistance mechanism in Lactococcus lactis. 95th Annual Meeting of the American Dairy Science Association. July 24-28. Baltimore, MD. J. Dairy Sci. 83 (Suppl. 1): 132.Google Scholar
  15. Boucher I& Moineau S (2001) Phages of Lactococcus lactis: an ecological and economical equilibrium. Recent Res. Dev. Virol. 3: 243–256.Google Scholar
  16. Boucher I, Emond E, Dion E, Montpetit D& Moineau S (2000) Microbiological and molecular impacts of AbiK on the lytic cycle of Lactococcus lactis phages of the 936 and P335 species. Microbiol. 146: 445–453.Google Scholar
  17. Boucher I, Ēmond Ē, Parrot M& Moineau S (2001) DNA sequence analysis of three Lactococcus lactis plasmids encoding phageresistance mechanisms. J. Dairy Sci. 84: 1610–1620.Google Scholar
  18. Boussemaer JP, Shrauwen PP, Sourrouille JL& Guy P (1980) Multiple modification/restriction systems in lactic streptococci and their significance in defining a phage typing system. J. Dairy Res. 47: 401–409.Google Scholar
  19. Brüssow H (2001) Phages of dairy bacteria. Annu. Rev. Microbiol. 55: 283–303.Google Scholar
  20. Brüssow H, Bruttin A, Dèsiere F, Lucchini S& Foley S, (1998) Molecular ecology and evolution of Streptococcus thermophilus bacteriophages-a review. Virus Genes 16: 95–109.Google Scholar
  21. Burrus V, Bontemps C, Decaris B& Guedon G (2001) Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICESt1 of Streptococcus thermophilus CNRZ368. Appl. Environ. Microbiol. 67: 1522–1528.Google Scholar
  22. Butler D& Fitzgerald GF (2001) Transcriptional analysis and regulation of expression of the ScrFI restriction-modification system of Lactococcus lactis subsp. cremoris UC503. J. Bacteriol. 183: 4668–4673.Google Scholar
  23. Chung DK, Kim JH& Batt CA (1991) Cloning and nucleotide sequence of the major capsid protein from Lactococcus lactis ssp. cremoris bacteriophage F4-1. Gene 101: 121–125.Google Scholar
  24. Chung DK, Chung SK& Batt CA (1992) Antisense RNA directed against the major capsid protein from Lactococcus lactis ssp. cremoris bacteriophage F4-1 confers partial resistance to the host. Appl. Microbiol. Technol. 37: 79–83.Google Scholar
  25. Cluzel P-J, Chopin A, Ehrlich SD& Chopin M-C (1991) Phage abortive infection mechanism from Lactococcus lactis ssp. lactis, expression of which is mediated by an iso-ISS1 element. Appl. Environ. Microbiol. 57: 3547–3551.Google Scholar
  26. Coakley M, Fitzgerald GF& Ross RP (1997) Application and evaluation of phage-resistance-and bacteriocin-encoding plasmid pMRC01 for the improvement of dairy starter cultures. Appl. Environ. Microbiol. 63: 1434–1440.Google Scholar
  27. Coffey AG, Fitzgerald GF& Daly C (1989) Identification and characterisation of a plasmid encoding abortive infection from Lactococcus lactis ssp. lactis UC811. Neth. Milk. Dairy J. 43: 229–244.Google Scholar
  28. Coffey AG, Fitzgerald GF& Daly C (1991a) Cloning and characterisation of the determinant for abortive infection from the lactococcal plasmid pCI829. J. Gen. Microbiol. 143: 1355–1362.Google Scholar
  29. Coffey AG, Costello V, Daly C& Fitzgerald GF (1991b) Plasmid encoded bacteriophage insensitivity in members of the genus Lactococcus with special reference to pCI829. In: Dunny GM, Cleary PP& McKay LL (Eds.) Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci (p 131–135). American Society for Microbiology, Washington, DC.Google Scholar
  30. Coffey A, Stokes D, Fitzgerald GF&Ross RP (2001) Traditional and molecular approaches to improving bacteriophage-resistance of Cheddar and Mozzarella starters. Ir. J. Agric. Fd. Res. 40: (2) (in press).Google Scholar
  31. Coleman J, Hirashima A, Inokuchi Y, Green PJ& Inouye M (1985) A novel immune system against bacteriophage infection using complementary RNA (micRNA). Nature 315: 601–603.Google Scholar
  32. Crow V, Martley FG, Coolbear T& Roundhill S (1995) The influence of phage-assisted lysis of Lactococcus lactis subsp. lactis ML8 on Cheddar cheese ripening. Int. Dairy J. 5: 451–472.Google Scholar
  33. Dai G, Su P, Allison GE, Geller BL, Zhu P, Kim WS& Dunn NW (2001) Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51-1. Appl. Environ. Microbiol. 67: 5225–5232.Google Scholar
  34. Daly C, Fitzgerald GF& Davis R (1996) Biotechnology of lactic acid bacteria with special reference to bacteriophage-resistance. Antonie van Leeuwenhoek 70: 99–110.Google Scholar
  35. Davis R, van der Lelie D, Mercenier A, Daly C& Fitzgerald GF (1993) ScrFI restriction-modification system of Lactococcus lactis subsp. cremoris UC503: cloning and characterization of two ScrFI methylase genes. Appl. Environ. Microbiol. 59: 777–785.Google Scholar
  36. Deng Y-M, Harvey ML, Liu CQ& Dunn NW (1997) A novel plasmid-encoded phage abortive infection system for Lactococcus lactis biovar diacetylactis. FEMS Microbiol. Lett. 146: 149–154.Google Scholar
  37. Deng YM, Liu CQ& Dunn NW (1999) Genetic organisation and functional analysis of a novel abortive infection system, AbiL, from Lactococcus lactis. J. Biotechnol. 67: 135–149.Google Scholar
  38. Deng YM, Liu CQ& Dunn NW (2000) LldI, a plasmid-encoded type I restriction and modification system in Lactococcus lactis. DNA Seq. 11: 239–245.Google Scholar
  39. Dickely F, Nilsson D, Hansen EB& Johansen E (1995) Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839–847.Google Scholar
  40. Dinsmore PK& Klaenhammer TR (1994) Phenotypic consequences of altering the copy number of abiA, a gene responsible for aborting bacteriophage infections in Lactococcus lactis. Appl. Environ. Microbiol. 60: 1129–1136.Google Scholar
  41. Dinsmore PK& Klaenhammer TR (1995) Bacteriophage-resistance in Lactococcus. Mol. Biotechnol. 4: 297–314.Google Scholar
  42. Dinsmore PK& Klaenhammer TR (1997) Molecular characterisation of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defence mechanism AbiA. J. Bacteriol. 179: 2949–2957.Google Scholar
  43. Dinsmore PK, O'Sullivan DJ & Klaenhammer TR (1998) A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species. Gene 212: 5–11.Google Scholar
  44. Djordjevic GM, O'Sullivan DJ, Walker SA, Conkling MA & Klaenhammer TR (1997a) Bacteriophage-triggered defence systems: phage adaptation and design improvements. Appl. Environ. Microbiol. 63: 4370–4376.Google Scholar
  45. Djordjevic GM, O'sullivan DJ, Walker SA, Conkling MA& Klaenhammer TR (1997b) Triggered-suicide system designed as a defense against bacteriophages. J. Bacteriol. 179: 6741–6748.Google Scholar
  46. Duplessis M& Moineau S (2001) Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol. Microbiol. 41: 325–336.Google Scholar
  47. Durmaz E& Klaenhammer TR (1995) A starter culture rotation strategy incorporating paired restriction-modification and abortive infection bacteriophage defences in a single Lactococcus lactis strain. Appl. Environ. Microbiol. 61: 1266–1273.Google Scholar
  48. Durmaz E& Klaenhammer TR (2000) Genetic analysis of chromosomal regions of Lactococcus lactis acquired by recombinant lytic phages. Appl. Environ. Microbiol. 66: 895–903.Google Scholar
  49. Durmaz E, Higgins DL& Klaenhammer TR (1992) Molecular characterisation of a second abortive phage resistance gene present in Lactococcus lactis ssp. lactis ME2. J. Bacteriol. 174: 7463–7469.Google Scholar
  50. Ēmond Ē, Holler BJ, Boucher PA, Vandenbergh P, Vedamuthu ER, Kondo JK& Moineau S (1997) Phenotypic and genetic characterisation of the bacteriophage abortive infection mechanism AbiK from Lactococcus lactis. Appl. Environ. Microbiol. 63: 1274–1283.Google Scholar
  51. Ēmond Ē, Dion E, Walker SA, Vedamuthu ER, Kondo JK& Moineau S (1998) AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl. Environ. Microbiol. 64: 4748–4756.Google Scholar
  52. Ēmond Ē, Lavall EER, Drolet G, Moineau S& LaPointe G (2001) Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl. Environ. Microbiol. 67: 1700–1709.Google Scholar
  53. Feirtag JM& McKay LL (1987) Thermoinducible lysis of temperature-sensitive Streptococcus cremoris strains. J. Dairy Sci. 70: 1779–1784.Google Scholar
  54. Fitzgerald GF, Daly C, Brown LR& Gingeras TR (1982) ScrFI: a new sequence-specific endonuclease from Streptococcus cremoris. Nucleic Acid Res. 10: 8171–8179.Google Scholar
  55. Fitzgerald GF, Twomey DP, Daly C& Coffey AG (1995) Bacteriophage-resistance in Lactococcus: molecular characterization of the ScrFI restriction/modification system from Lactococcus lactis subsp. cremoris UC503. Dev Biol Stand. 85: 581–590.Google Scholar
  56. Foley S, Lucchini S, Zwahlen MC& Brussow H (1998) A short noncoding viral DNA element showing characteristics of a replication origin confers bacteriophage-resistance to Streptococcus thermophilus. Virology 250: 377–387.Google Scholar
  57. Forde A& Fitzgerald GF (1999) Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek 76: 89–113.Google Scholar
  58. Forde A, Fitzgerald GF& Daly C (1999) Identification of four phage-resistance plasmids from Lactococcus lactis ssp. cremoris HO2. Appl. Environ. Microbiol. 65: 1540–1547.Google Scholar
  59. Garbutt KC, Kraus J& Geller BL (1997) Bacteriophage-resistance in Lactococcus lactis engineered by replacement of a gene for a bacteriophage receptor. J. Dairy Sci. 80: 1512–1519.Google Scholar
  60. Garvey P, van Sinderen D, Twomey DP, Hill C& Fitzgerald GF (1995a) Molecular genetics of bacteriophage and natural phage defence systems in the genus Lactococcus. Int. Dairy J. 5: 905–947.Google Scholar
  61. Garvey P, Fitzgerald GF& Hill C (1995b) Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl. Environ. Microbiol. 61: 4321–4328.Google Scholar
  62. Garvey PA, Hill C& Fitzgerald GF (1996) The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Appl. Environ. Microbiol. 62: 676–679.Google Scholar
  63. Garvey P, Rince A, Hill C& Fitzgerald GF (1997) Identification of a RecA homolog (RecALP) on the conjugative lactococcal phageresistance plasmid pNP40: evidence of a role for chromosomally encoded RecAL in abortive infection. Appl. Environ. Microbiol. 63: 1244–1251.Google Scholar
  64. Gautier M& Chopin MC (1987) Plasmid-determined systems for restriction and modification activity and abortive infection in Streptococcus cremoris. Appl. Environ. Microbiol. 53: 923–927.Google Scholar
  65. Gireesh T, Davidson BE& Hillier AJ (1992) Conjugal transfer in Lactococcus lactis of a 68-kb pair chromosomal fragment containing the structural gene for the peptide bacteriocin nisin. Appl. Environ. Microbiol. 58: 1670–1676.Google Scholar
  66. Guimont C, Henry P& Linden G (1993) Restriction-modification in Streptococcus thermophilus: isolation and characterisation of a type II restriction endonuclease Sth455I. Appl. Microbiol. Biotechnol. 39: 216–220.Google Scholar
  67. Gulstrom TJ, Pearce L E, Sandine W E& Elliker PR (1979) Evaluation of commercial phage inhibitory media. J. Dairy Sci. 62: 208–221.Google Scholar
  68. Harrington A& Hill C (1991) Construction of a bacteriophageresistance derivative of Lactococcus lactis ssp. lactis 425A by using the conjugal plasmid pNP40. Appl. Environ. Microbiol. 57: 3405–3409.Google Scholar
  69. Harrington A& Hill C (1992) Plasmid involvement in the formation of a spontaneous bacteriophage insensitive mutant Lactococcus lactis. FEMS Microbiol. Lett. 96: 132–142.Google Scholar
  70. Hickey RM, Twomey DP, Ross RP& Hill C (2001) Exploitation of plasmid pMRC01 to direct transfer of mobilizable plasmids into commercial lactococcal starter strains. Appl. Environ.Microbiol. 67: 2853–2858.Google Scholar
  71. Hill C (1993) Bacteriophage and bacteriophage-resistance in lactic acid bacteria. FEMS Microbiol. Lett. 12: 87–108.Google Scholar
  72. Hill C, Pierce K& Klaenhammer TR (1989) The conjugative plasmid pTR2030 encodes two bacteriophage defence mechanisms in lactococci, restriction-modification (R+/M+) and abortive infection (Hsp+). Appl. Environ. Microbiol. 55: 2416–2419.Google Scholar
  73. Hill C, Miller LA& Klaenhammer TR (1990a) Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage-resistance in Lactococcus lactis. J. Bacteriol. 172: 6419–6426.Google Scholar
  74. Hill C, Miller LA& Klaenhammer TR (1990b) Nucleotide sequence and distribution of the pTR2030 resistance determinant (hsp) which aborts bacteriophage infection in lactococci. Appl. Environ. Microbiol. 56: 2255–2258.Google Scholar
  75. Hill C, Miller LA& Klaenhammer TR (1991) In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J. Bacteriol. 173: 4363–4370.Google Scholar
  76. Huggins AR& Sandine WE (1979) Selection and charaterisation of phage insensitive lactic streptococci. J. Dairy Sci. 62: 70–71.Google Scholar
  77. Hughes BF& McKay LL (1992) deriving phage insensitive lactococci using a food-grade vector encoding phage and nisin resistance. J. Dairy Sci. 75: 914–923.Google Scholar
  78. Jarvis AW (1988) Conjugal transfer in lactic streptococci of plasmid-encoded insensitivity to prolate-and small isometricheaded bacteriophages. Appl. Environ. Microbiol. 54: 777–784.Google Scholar
  79. Jarvis AW (1989) Bacteriophages of lactic acid bacteria. J. Dairy Sci. 72: 3406–3428.Google Scholar
  80. Jarvis AW (1992) Analysis of phage-resistance mechanisms encoded by lactococcal plasmid pAJ2074. Can. J. Microbiol. 39: 252–258.Google Scholar
  81. Jarvis AW, Fitzgerald GF, Mata M, Mercenier A, Neve H, Powell IB, Ronda C, Saxelin M& Teuber M (1991) Species and types of phages of lactococcal bacteriophages. Intervirology 32: 2–9.Google Scholar
  82. Josephsen J& Klaenhammer TR (1990) Stacking of three different restriction and modification systems in Lactococcus lactis by cotransformation. Plasmid 23: 71–75.Google Scholar
  83. Josephsen J& Neve H (1998) Bacteriophages and lactic acid bacteria. In: Salminen S& van Wright A (Eds.) Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd Edn. (pp 385–436). Marcel Dekker, New York.Google Scholar
  84. Josephsen J, Andersen N, Behrndt E, Brandsborg E, Christiansen G, Hansen MB, Hansen S, Nielsen EW & Vogensen (1994) An ecological study of of lytic bacteriophages of lactococcal bacteriophages of Lactococcus lactis subsp. cremoris isolated in a cheese plant over a 5-year-period. Int. Dairy J. 4: 123–140.Google Scholar
  85. Josephsen J, Jorgen-Jensen B& Nyengaard NR (1998) Determination of the recognition sequence of the type II restriction endonuclease, LlaCI, from Lactococcus lactis W15. FEMS Microbiol. Lett. 163: 25–29.Google Scholar
  86. Kelly W, Dobson J, Jorck-Ramberg D, Fitzgerald GF&Daly C (1990) Introduction of bacteriophage-resistance plasmids into commercial Lactococcus starter cultures. FEMS Microbiol. Rev. 87: Abst. C20.Google Scholar
  87. Khosravi L, Sandine WE& Ayres JW (1991) Evaluation of a newlyformulated bacteriophage inhibitory medium for cultivation of thermophilic lactic acid bacteria. Cultered Dairy Products 29: 4–9.Google Scholar
  88. Kim SG& Batt CA (1991) Antisense mRNA-mediated bacteriophage-resistance in Lactococcus lactis ssp. lactis. Appl. Environ. Microbiol. 57: 1109–1113.Google Scholar
  89. Kim SG, Bor Y-C& Batt CA (1992) Bacteriophage-resistance in Lactococcus lactis ssp. lactis using antisense ribonucleic acid. J. Dairy Sci. 75: 1761–1767.Google Scholar
  90. Klaenhammer TR (1984) Interactions of bacteriophage with lactic streptococci. Adv. Appl. Microbiol. 30: 1–29.Google Scholar
  91. Klaenhammer TR (1987) Plasmid-directed mechanisms for bacteriophage defence in lactic streptococci. FEMS Microbiol. Rev. 46: 313–325.Google Scholar
  92. Klaenhammer TR (1991) Development of bacteriophage resistant strains of lactic acid bacteria. Biochem. Soc. Trans. 19: 675–681.Google Scholar
  93. Klaenhammer TR& Fitzgerald GF (1994) Bacteriophage and bacteriophage-resistance. In: Gasson MJ& de Vos WM (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria (pp 106–168). Blackie Academic and Professional, Glasgow.Google Scholar
  94. Klaenhammer TR& Sanozky RB (1985) Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phageresistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol. 131: 1531–1541.Google Scholar
  95. Kraus J& Geller BL (2001) Cloning of genomic DNA of Lactococcus lactis that restores phage sensitivity to an unusual bacteriophage sk1-resistant mutant. Appl. Environ. Microbiol. 67: 791–798.Google Scholar
  96. Labrie S& Moineau S (2000) Multiplex PCR for detection and identification of lactococcal bacteriophages. Appl. Environ. Microbiol. 66: 987–994.Google Scholar
  97. Le Marrec C, van Sinderen D, Walsh L, Stanley E, Viegels E, Moineau S, Heinze P, Fitzgerald GF& Fayard B (1997) Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Appl. Environ. Microbiol. 63: 3246–3253.Google Scholar
  98. Lepeuple A-S, Vassal L, Cesselin B, Delacroix-Buchet A, Gripon J-C& Chapot-Chartier M-P (1998) Involvement of a prophage in the lysis of Lactococcus lactis subsp. cremoris AM2 during cheese ripening. Int. Dairy J. 43: 301–311.Google Scholar
  99. Limsowtin GKY, Heap H& Lawrence RC (1978). Heterogeneity among strains of lactic streptococci N.Z. J. Dairy Sci. 13: 1–8.Google Scholar
  100. Liu C-Q, Leelawatcharamas V, Harvey ML& Dunn NW (1996) Cloning vectors for lactococci based on a plasmid encoding resistance to cadmium. Curr. Microbiol. 33: 35–39.Google Scholar
  101. Lucchini S, Sidoti J& Brussow H. (2000) Broad-range bacteriophage-resistance in Streptococcus thermophilus by insertional mutagenesis. Virology 275: 267–277.Google Scholar
  102. Madsen A& Josephsen J (1998a) Characterisation of LlaCI, a new restriction-modification system from Lactococcus lactis ssp. cremoris W15. Biol. Chem. 379: 443–449.Google Scholar
  103. Madsen A& Josephsen J (1998b) Cloning and characterisation of the lactococcal plasmid-encoded type II restriction-modification system, LlaDII. Appl. Environ. Microbiol. 64: 2424–2431.Google Scholar
  104. Madsen A& Josephsen J (2001) The LlaGI restriction and modi-fication system of Lactococcus lactis W10 consists of only one single polypeptide. FEMS Microbiol. Lett. 200: 91–96.Google Scholar
  105. Madsen A, Westphal C& Josephsen J (2000) Characterization of a novel plasmid-encoded HsdS subunit, S.LlaW12I, from Lactococcus lactis W12. Plasmid 44: 196–200.Google Scholar
  106. Madsen SM, Mills D, Djordjevic G, Israelsen H& Klaenhammer TR (2001) Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis. Appl. Environ. Microbiol. 67: 1128–1139.Google Scholar
  107. Mayo B, Hardisson C& Brana AF (1991) Nucleolytic activities in Lactococcus lactis ssp. lactis NCDO497. FEMS Microbiol. Lett. 79: 195–198.Google Scholar
  108. McGrath S, Seegers JF, Fitzgerald GF& van Sinderen D (1999) Molecular characterization of a phage-encoded resistance system in Lactococcus lactis. Appl. Environ. Microbiol. 65: 1891–1899.Google Scholar
  109. McGrath S, Fitzgerald GF& van Sinderen D (2001) Improvement and optimization of two engineered phage resistance mechanisms in Lactococcus lactis. Appl. Environ. Microbiol. 67: 608–616.Google Scholar
  110. McGrath S, Fitzgerald GF& van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol. Microbiol. 43: 509–520.Google Scholar
  111. McLandsborough LA, Kolaetis KM, Requena T& McKay LL (1995) Cloning and characterisation of the abortive infection genetic determinant abiD isolated from pBF61 of Lactococcus lactis ssp. lactis KR5. Appl. Environ. Microbiol. 61: 2023–2026.Google Scholar
  112. Mills S, Coffey A, O'sullivan L, Stokes D, Hill C, Fitzgerald GF& Ross RP (2002) Use of lacticin 481 to facilitate delivery of the bacteriophage-resistance plasmid, pCBG104 to cheese starters. J. Appl. Microbiol. 92: 238–246.Google Scholar
  113. Moineau S (1999) Applications of phage-resistance in lactic acid bacteria. Antonie van Leeuwenhoek 76: 377–382.Google Scholar
  114. Moineau S, Fortier J, Ackermann H-W& Pandian S (1992) Characterization of lactococcal bacteriophages from Québec cheese plants. Can. J. Microbiol. 38: 875–882.Google Scholar
  115. Moineau S, Pandian S& Klaenhammer TR (1993a) Restrictionmodification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry. Appl. Environ. Microbiol. 59: 197–202.Google Scholar
  116. Moineau S, Pandian, S& Klaenhammer TR (1993b) Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome. Appl. Environ. Microbiol. 60: 1832–1841.Google Scholar
  117. Moineau S, Walker SA, Vedamuthu ER& Vandenbergh PA (1995a) Cloning and sequencing of LlaDCHI [corrected] restriction/modification genes from Lactococcus lactis and relatedness of this system to the Streptococcus pneumoniae DpnII system. Appl. Environ. Microbiol. 61: 2193–2202.Google Scholar
  118. Moineau S, Walker SA, Holler BJ, Vedamuthu ER& Vandenbergh PA (1995b) Expression of a Lactococcus lactis phage-resistance mechanism by Streptococcus thermophilus. Appl. Environ. Microbiol. 61: 2461–2466.Google Scholar
  119. Moineau S, Borkaev M, Holler BJ, Walker SA, Kondo JK, Vedamuthu ER& Vandenbergh PA (1996) Isolation and characterization of lactococcal bacteriophages from cultured buttermilk plants in the United States. J. Dairy Sci. 79: 2104–2111.Google Scholar
  120. Murray NE, Daniel AS, Cowan GM& Sharp PM (1993) Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes. Mol. Microbiol. 9: 199–143.Google Scholar
  121. Neve H, Krusch U& Teuber M (1989) Classification of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus isolated from yoghurt and Swiss-type cheese. Appl. Microbiol. Biotechnol. 30: 624–629.Google Scholar
  122. Nyengaard N, Vogensen FK& Josephsen J (1993) LlaAI andLlaBI, two type II restriction endonucleases from Lactococcus lactis ssp. cremoris W9 and W56 recognising, respectively, 5'-/GATC-3' and 5'-C/TRYAG-3' Gene 136: 371–372.Google Scholar
  123. Nyengaard N, Vogensen FK& Josephsen J (1995) Restrictionmodification systems in Lactococcus lactis. Gene 157: 13–18.Google Scholar
  124. Nyengaard NR, Falkenberg-Klok J& Josephsen J (1996) Cloning and analysis of the restriction-modification system LlaBI, a bacteriophage-resistance system from Lactococcus lactis ssp. cremoris W56. Appl. Environ. Microbiol. 62: 3494–3498.Google Scholar
  125. O' Connor L, Coffey A, Daly C& Fitzgerald GF (1996) AbiG, a genotypically novel abortive infection mechanism encoded by plasmid pCI750 of Lactococcus lactis ssp. cremoris UC653. Appl. Environ. Microbiol. 62: 3075–3082.Google Scholar
  126. O' Connor L, Tangney M& Fitzgerald GF (1999) Expression, regulation, and mode of action of the AbiG abortive infection system of Lactococcus lactis subsp. cremoris UC653. Appl. Environ. Microbiol. 65: 330–335.Google Scholar
  127. O'Sullivan D, Coffey A, Fitzgerald GF, Hill C& Ross RP (1998) Design of a phage-insensitive lactococcal dairy starter via sequential transfer of naturally occurring conjugative plasmids. Appl. Environ. Microbiol. 64: 4618–4622.Google Scholar
  128. O'Sullivan D, Ross RP, Fitzgerald GF& Coffey A (2000a) Investigation of the relationship between lysogeny and lysis of Lactococcus lactis in cheese using prophage-targeted PCR. Appl. Environ. Microbiol. 66: 2192–2198.Google Scholar
  129. O'Sullivan D, Twomey DP, Coffey A, Hill C, Fitzgerald GF& Ross RP (2000b) Novel type I restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis. Mol. Microbiol. 36: 866–875.Google Scholar
  130. O'Sullivan D, Ross RP, Twomey DP, Fitzgerald GF, Hill C& Coffey A (2001) Naturally occurring lactococcal plasmid pAH90 links bacteriophage-resistance and mobility functions to a foodgrade selectable marker. Appl. Environ. Microbiol. 67: 929–937.Google Scholar
  131. O'Sullivan DJ, Hill C& Klaenhammer TR (1993) Effect of increasing the copy number of bacteriophage origins of replication, in trans, on incoming-phage proliferation. Appl. Environ. Microbiol. 59: 2449–2456.Google Scholar
  132. O'Sullivan DJ, Zagula K& Klaenhammer TR (1995) In vivo restriction by LlaI is encoded by three genes, arranged in an operon with llaIM, on the conjugative Lactococcus plasmid pTR2030. J. Bacteriol. 177: 134–143.Google Scholar
  133. O'Sullivan DJ, Walker SA, West SG& Klaenhammer TR (1996) Development of an expression system using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology 14: 82–87.Google Scholar
  134. O'Sullivan DJ& Klaenhammer TR (1998) Control of expression of LlaI restriction in Lactococcus lactis. Mol. Microbiol. 27: 1009–1020.Google Scholar
  135. O'Sullivan T, van Sinderen D& Fitzgerald G (1999) Structural and unctional analysis of pCI65st, a 6.5 kb plasmid from Streptococcus thermophilus NDI-6. Microbiology 145: 127–134.Google Scholar
  136. Oberg CJ& Broadbent JR (1993) Thermophilic starter cultures: another set of problems. J. Dairy Sci. 76: 2392–2406.Google Scholar
  137. Parreira R, Ehrlich SD& Chopin M-C (1996) Dramatic decay of phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB. Mol. Microbiol. 19: 221–230.Google Scholar
  138. Pillidge CJ, Collins LJ, Ward, LJH, Cantillon BM, Shaw BD, Timmins MJ, Heap HA& Polzin KM (2000) Efficacy of four conjugal lactococcal phage-resistance plasmids against phage in commercial Lactococcus lactis subsp. cremoris cheese starter strains. Int. Dy J. 10: 617–625.Google Scholar
  139. Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S& de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl. Environ. Microbiol. 62: 1008–1013.Google Scholar
  140. Poch MT, Somkuti GA& Solaiman DKY (1997) Sth132I, a novel class IIS restriction endonuclease of Streptococcus thermophilus ST132. Gene 195: 201–206.Google Scholar
  141. Polzin KM, Collins LJ, Lubbers MW&Jarvis AW (1996) Effect of various mRNAs on bacteriophage c2 replication. In: Proceedings of 5th Symposium on Lactic Acid Bacteria, Genetics, Metabolism and Applications, Veldhoven, The Netherlands. Abs F2.Google Scholar
  142. Prevots F& Ritzenthaler P (1998) Complete sequence of the new lactococcal abortive phage-resistance gene abiO. J. Dairy Sci. 81: 1483–1485.Google Scholar
  143. Prevots F, Daloyau M, Bonin O, Dumont X& Tolou S (1996) Cloning and sequencing of the novel abortive infection gene abiH of Lactococcus lactis ssp. lactis biovar. diacetylactis S94. FEMS Microbiol. Lett. 142: 295–299.Google Scholar
  144. Prevots F, Tolou S, Delpech B, Kaghad M& Daloyau M (1998) Nucleotide sequence and analysis of the new chromosomal abortive infection gene abiN of Lactococcus lactis ssp. cremoris S114. FEMS Microbiol. Lett. 159: 331–336.Google Scholar
  145. Quiberoni A, Stiefel JI& Reinheimer JA (2000) Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol. J. Appl. Microbiol. 89: 1059–1065.Google Scholar
  146. Richardson GH, Cheng CT& Young R (1977) Lactic bulk culture system utilising a whey-based bacteriophage inhibitory medium and pH control. J. Dairy Sci. 60: 378–386.Google Scholar
  147. Rince A, Tangney M& Fitzgerald GF (2000) Identification of a DNA region from lactococcal phage sk1 protecting phage 712 from the abortive infection mechanism AbiF. FEMS Microbiol. Lett. 182: 185–191.Google Scholar
  148. Sanders ME (1988) phage-resistance in lactic acid bacteria. Biochimie 70: 411–422.Google Scholar
  149. Sanders ME& Klaenhammer TR (1981) Evidence for plasmid linkage of restriction and modification in Streptococcus cremoris KH. Appl. Environ. Microbiol. 42: 944–950.Google Scholar
  150. Sanders ME, Leonard PJ, Sing WD& Klaenhammer TR (1986) Conjugal strategy for the construction of fast-acid producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol. 52: 1101–1107.Google Scholar
  151. Sandine WE (1989) Use of bacteriophage-resistant mutants of lactococcal starters in cheese-making. Neth. Milk Dairy J. 43: 211–219.Google Scholar
  152. Sandine WE (1995) Commercial production of dairy starter cultures. In: Cogan TM, Accolas JP (Eds.) Dairy Starter Cultures, 3rd Edn. (pp 191–206) VCH Publishers, New York.Google Scholar
  153. Sanford JC& Johnston SA (1985) The concept of parasite-derived resistance-deriving resistance genes from the parasites own genome. J. Theor. Biol. 113: 395–405.Google Scholar
  154. Schouler C, Gautier S, Ehrlich SD& Chopin M-C (1998a) Combinational variation of restriction-modification specificities in Lactococcus lactis. Mol. Microbiol. 28: 169–178.Google Scholar
  155. Schouler C, Clier F, Lerayer AD Ehrlich SD& Chopin M-C (1998b) A type IC restriction-modification system in Lactococcus lactis. J. Bacteriol. 180: 407–411.Google Scholar
  156. Seegers JF, van Sinderen D& Fitzgerald GF (2000) Molecular characterization of the lactococcal plasmid pCIS3: natural stacking of specificity subunits of a type I restriction/modification system in a single lactococcal strain. Microbiology 146: 435–443.Google Scholar
  157. Sing WD& Klaenhammer TR (1986) Conjugal transfer of bacteriophage-resistance determinants on pTR2030 into Streptococcus cremoris strains. Appl. Environ. Microbiol. 51: 1264–1271.Google Scholar
  158. Sing WD& Klaenhammer TR (1990b) Plasmid encoded abortive infection in lactococci: a review. J. Dairy Sci. 73: 2239–2251.Google Scholar
  159. Sing WD& Klaenhammer TR (1991) Characterization of restriction-modification plasmids from Lactococcus lactis ssp. cremoris and their effects when combined with pTR2030. J. Dairy Sci. 74: 1133–1144.Google Scholar
  160. Sing WD& Klaenhammer TR (1993) A strategy for rotation of different bacteriophage defences in a lactococcal single-strain starter culture system. Appl. Environ. Microbiol. 59: 365–372.Google Scholar
  161. Solaiman DKY& Somkuti GA (1990) Isolation and characterisation of a type II restriction endonuclease from Streptococcus thermophilus ST117. FEMS Microbiol. Lett. 80: 261–266.Google Scholar
  162. Solaiman DKY& Somkuti GA (1991) A type II restriction endonuclease from Streptococcus thermophilus. FEMS Microbiol. Lett. 67: 261–266.Google Scholar
  163. Solow BT& Somkuti GA (2001) Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Curr. Microbiol. 42: 122–128.Google Scholar
  164. Stanley E, Walsh L, van der Zwet A, Fitzgerald GF& van Sinderen D (2000) Identification of four loci isolated from two Streptococcus thermophilus phage genomes responsible for mediating bacteriophage resistance. FEMS Microbiol. Lett. 182: 271–277.Google Scholar
  165. Stokes D, Ross RP, Fitzgerald GF& Coffey A (2001). Application of Streptococcus thermophilus DPC1842 as an adjunct to counteract phage in a predominantly lactococcal Cheddar cheese starter: use in bulk starter culture systems. Le Lait 81: 327–334.Google Scholar
  166. Sturino JM& Klaenhammer TR (2002) Expression of antisense RNA against Streptococcus thermophilus bacteriophages. Appl. Environ. Microbiol. 68: 588–596.Google Scholar
  167. Su P, Harvey M, Im HJ& Dunn NW (1997) Isolation, cloning and characterisation of the abiI gene from Lactococcus lactis ssp. lactis M138 encoding abortive phage infection. J. Biotechnol. 54: 95–104.Google Scholar
  168. Su P, Im H, Hsieh H, Kang' A S & Dunn NW (1999) LlaFI, a type II restriction and modification system in Lactococcus lactis. Appl. Environ. Microbiol. 65: 686–693.Google Scholar
  169. Thunell RK, Sandine WE& Bodyfelt FW (1981) Phage insensitive multiple strain starter approach to Cheddar cheese making. J. Dairy Sci. 64: 2270–2277.Google Scholar
  170. Trotter M, Mills S, Ross RP, Fitzgerald GF& Coffey A (2001) The use of cadmium resistance on the phage-resistance plasmid pNP40 facilitates selection for its horizontal transfer to industrial dairy starter lactococci. Lett. Appl. Microbiol. 33: 409–414.Google Scholar
  171. Twomey DP, Gabillet N, Daly C& Fitzgerald GF (1997) Molecular characterisation of the restriction endonuclease gene (scrFIR) associated with the ScrFI restriction-modification system from Lactococcus lactis ssp. cremoris UC503. Microbiology 143: 2277–2286.Google Scholar
  172. Twomey DP, McKay LL& O'sullivan DJ (1998) Molecular characterisation of the Lactococcus lactis LlaKR2I restrictionmodification system and effect of an IS982 element positioned between the restriction and modification genes. J. Bacteriol. 180: 5844–5854.Google Scholar
  173. Twomey DP, De Urraza PJ, McKay LL& O'sullivan DJ (2000) Characterization of AbiR, a novel multicomponent abortive infection mechanism encoded by plasmid pKR223 of Lactococcus lactis subsp. lactis KR2. Appl. Environ. Microbiol. 66: 2647–2651.Google Scholar
  174. Walker SA& Klaenhammer TR (1998) Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage phi31. J. Bacteriol. 180: 921–931.Google Scholar
  175. Walker SA& Klaenhammer TR (2000) An explosive antisense RNA strategy for inhibition of a lactococcal bacteriophage. Appl. Environ. Microbiol. 66: 310–319.Google Scholar
  176. Ward AC, Davidson BE, Hillier AJ& Powell IB (1992) Conjugally transferable phage-resistance activities from Lactococcus lactis DRC1. J. Dairy Sci. 75: 683–691.Google Scholar
  177. Whitehead WE, Ayres JW& Sandine, WE (1993) A review of starter media for cheese making. J. Dairy Sci. 76: 2344–2353.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Aidan Coffey
    • 1
  • R. Paul Ross
    • 2
  1. 1.Department of Biological SciencesCork Institute of TechnologyCorkIreland
  2. 2.Dairy Products Research CentreTeagasc (Irish Agricultural and Food Development Authority)Co. CorkIreland

Personalised recommendations