Antonie van Leeuwenhoek

, Volume 82, Issue 1–4, pp 29–58 | Cite as

Discovering lactic acid bacteria by genomics

  • Todd Klaenhammer
  • Eric Altermann
  • Fabrizio Arigoni
  • Alexander Bolotin
  • Fred Breidt
  • Jeffrey Broadbent
  • Raul Cano
  • Stephane Chaillou
  • Josef Deutscher
  • Mike Gasson
  • Maarten van de Guchte
  • Jean Guzzo
  • AxelHartke Hartke
  • Trevor Hawkins
  • Pascal Hols
  • Robert Hutkins
  • Michiel Kleerebezem
  • Jan Kok
  • James Steele
  • Daniel O'Sullivan
  • Willem de Vos
  • Bart Weimer
  • Monique Zagorec
  • Roland Siezen


This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, nvironmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view of Gram–positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.

lactic acid bacteria genomics Gram–positive bacteria food health Lactococcus Lactobacillus Streptococcus Pediococcus Leuconostoc Oenococcus Propionibacterium Bifidobacterium Brevibacterium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE& Molin G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 85: 88–94.Google Scholar
  2. Almirón-Roig E, Mulholland F, Gasson MJ& Griffin AM (2000) The complete cps gene cluster from Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of a new exopolysaccharide. Microbiology. 146: 2793–2802.Google Scholar
  3. Alsop RM (1983) Industrial production of dextrans. In: Bushell ME (Ed) Progress in Industrial Microbiology (pp 1–42). Elsevier, New York.Google Scholar
  4. Altermann E, Klein JR& Henrich B (1999) Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage (phi) adh. Gene 236: 333–346.Google Scholar
  5. Alvarez S, Herrero C, Bru E& Perdigon G (2001) Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice. J. Food Prot. 64: 1768–1774.Google Scholar
  6. Amador E, Castro JM, Correia A& Martin JF (1999) Structure and organization of the rrnD operon of Brevibacterium lactofermentum: analysis of the 16S rRNA gene. Microbiology 145: 915–924.Google Scholar
  7. Arrach N, Fernandez-Martin R, Cerda-Olmedo E& Avalo J (2001) A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc. Natl. Acad. Sci. 98: 1687–1692.Google Scholar
  8. Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S& Von Wright A (Eds) Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd edition (pp 1–72). Marcel Dekker, New York.Google Scholar
  9. Baccigalupi L, Naclerio G, de Felice M& Ricca E (2000) Efficient insertional mutagenesis in Streptococcus thermophilus. Gene 258: 9–14.Google Scholar
  10. Barefoot SF& Klaenhammer TR (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45: 1808–1815.Google Scholar
  11. Beelman RB, Gavin A III& Keen RM (1977) A new strain of Leuconostoc oenos for induced malo-lactic fermentation in eastern wines. Am. J. Enol. Vitic. 28: 159–165.Google Scholar
  12. Beelman RB, McArdle FJ& Duke GR (1980) Comparison of Leuconostoc oenos strains ML-34 and PSU-1 to induce malolactic fermentation in Pennsylvania red table wines. Am. J. Enol. Viticult. 31: 269–276.Google Scholar
  13. Beimfohr C, Ludwig W& Schleifer K-H (1997) Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. System. Appl. Microbiol. 20: 216–221.Google Scholar
  14. Beresford TP, Fitzsimons NA, Brennan NL& Cogan TM (2001) Recent advances in cheese microbiology. Int. Dairy J. 11: 259–274.Google Scholar
  15. Bernet M-F, Brassart D, Neeser J-R& Servin AL (1994) Lactobacillus acidophilus La1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35: 483–489.Google Scholar
  16. Bernet-Camard M-F, Liévin V, Brassart D, Neeser J-R, Servin AL& Hudault S (1997) The human Lactobacillus acidophilus strain La1 secretes a non bacteriocin antibacterial substance active in vitro and in vivo. Appl. Environ. Microbiol. 63: 2747–2753.Google Scholar
  17. Bhowmik T& Steele JL (1993) Development of an electroporation procedure for gene disruption in Lactobacillus helveticus CNRZ32. J. Gen. Microbiol. 139: 1433–1439.Google Scholar
  18. Bhowmik T, Fernández L& Steele JL (1993) Gene replacement in Lactobacillus helveticus CNRZ 32. J. Bacteriol. 175: 6341–6344.Google Scholar
  19. Biavati B& Mattarelli P (2001) The family Bifidobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH& Stackebrandt E (Eds) The Prokaryotes (pp 1–70). Springer, New York.Google Scholar
  20. Black F, Einarsson K, Lidbeck A, Orrhage K& Nord CE (1991) Effect of lactic acid producing bacteria on the human intestinal microflora during ampicillin treatment. Scand. J. Infect. Dis. 23: 247–254.Google Scholar
  21. Bolotin A, Mauger S, Malarme K, Ehrlich SD& Sorokin A (1999) Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie van Leeuwenhoek 76: 27–76.Google Scholar
  22. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD& Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.Google Scholar
  23. Bolotin A, Ehrlich SD&Sorokin A (2002) Studies of genomes of dairy bacteria Lactococcus lactis. Sci. Aliments (in press)Google Scholar
  24. Boyaval P, Boyaval E& Desmazeaud MJ (1985) Survival of Brevibacterium linens during nutrient starvation and intracellular changes. Arch. Microbiol. 141: 128–132.Google Scholar
  25. ten Brink B, Damink C, Joosten HMLJ& Huis in+t Veld JHJ (1990) Ocurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 73–84.Google Scholar
  26. Broadbent JR (2001) Genetics of lactic acid bacteria. In: Steele JL& Marth EH (Eds) Applied Dairy Microbiology, 2nd ed. Marcel Dekker, New York.Google Scholar
  27. Broker BE (1977) Ultrastructural surface changes associated with dextran synthesis by Leuconostoc mesenteroides. J. Bacteriol. 131: 288–92.Google Scholar
  28. Burrus V, Bontemps C, Decaris B& Guédon G (2001) Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICESt1 of Streptococcus thermophilus CNRZ368. Appl. Environ. Microbiol. 67: 1522–1528.Google Scholar
  29. Caldwell S, McMahon DJ, Oberg CJ& Broadbent JR (1996) Development and characterization of lactose-positive Pediococcus species for milk fermentation. Appl. Environ. Microbiol. 62: 936–941.Google Scholar
  30. Caldwell S, Hutkins RW, McMahon DJ, Oberg CJ& Broadbent JR (1998) Lactose and galactose uptake by genetically engineered Pediococcus species. Appl. Microbiol. Biotechnol. 49: 315–320.Google Scholar
  31. Champomier-Verges M-C, Chaillou S, Cornet M& Zagorec M (2002) Lactobacillis sakei: recent developments and future prospects. Res. Microbiol. 153: 115–123.Google Scholar
  32. Chen H, Lim CK, Lee YK& Chan YN (2000) Comparative analysis of the genes encoding 23S–5S rRNA intergenic spacer regions of Lactobacillus casei-related strains. Int. J. Syst. Evol. Microbiol. 50: 471–478.Google Scholar
  33. Chevallier B, Hubert JC& Kammerer B (1994) Determination of chromosome size and number of rrn loci in Lactobacillus plantarum by pulsed-field gel electrophoresis. FEMS Microbiol. Lett. 120: 51–56.Google Scholar
  34. Cho JS, Choi YJ& Chung DK (2000) Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli. Curr. Microbiol 40: 257–63.Google Scholar
  35. Christensen JE, Dudley EG, Pederson JR& Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76: 217–246.Google Scholar
  36. Clark RH, Russell WM&Klaenhammer TR (2000) Distribution of Lactobacillus acidophilus among a variety of cultured foods and probiotics. Abstracts, Annual IFT Meeting of the Institute of Food Technologists, Dallas, TX, 10 June, 2000Google Scholar
  37. Coderre PE& Somkuti GA (1999) Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Curr. Microbiol. 39: 295–301.Google Scholar
  38. Cogan TM (1987) Co-metabolism of citrate and glucose by Leuconostoc spp.: effects on growth, substrates and products. J. Appl. Bacteriol. 63: 551–58.Google Scholar
  39. Cogan TM, O'Dowd M& Mellerick D (1981) Effects of sugar on acetoin production from citrate by Leuconostoc lactis. Appl. Environ. Microbiol. 41: 1–8.Google Scholar
  40. Collins MD, Phyllips BA& Zanoni P (1989) Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Bacteriol. 39: 105–108.Google Scholar
  41. Conway PL, Gorbach SL& Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1–12.Google Scholar
  42. Coton E, Rollan GC& Lonvaud-Funel A (1998) Histidine carboxylase of Leuconostoc oenos 9204: Purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J. Appl. Microbiol. 84: 143–151.Google Scholar
  43. Daeschel MA& Klaenhammer TR (1985) Association of a 13.6-megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol. 50: 1528–1541.Google Scholar
  44. Dambekodi PC& Gilliland SE (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81: 1818–1824.Google Scholar
  45. Daniel P (1995) Sizing the Lactobacillus plantarum genome and other lactic bacteria species by transverse alternating field electrophoresis. Curr. Microbiol. 30: 243–246.Google Scholar
  46. Daveran-Mingot ML, Campo N, Ritzenthaler P& Le Bourgeois P (1998) A natural large chromosomal inversion of Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J. Bacteriol. 180: 4834.Google Scholar
  47. Davidson B, Kordis N, Dobos M& Hillier A (1996) Genomic organization of lactic acid bacteria. Antonie van Leeuwenhoek 70: 161–183.Google Scholar
  48. Delcher AL, Harmon D, Kasif S, White O& Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nuclaic. Acids Res. 27: 4636–4641.Google Scholar
  49. Delcour J, Ferain T& Hols P (2000) Advances in the genetics of thermophilic lactic acid bacteria. Curr. Opin. Biotechnol. 11: 497–504.Google Scholar
  50. Dellaglio F, Dicks LMT, du Toit M& Torriani S (1991) Designation of ATCC334 in place of ATCC393 (NCDO 161) as the neotype strain of Lactobacillus casei subsp. casei and rejection of the name Lactobacillus paracasei. Int. J. Syst. Bacteriol. 41: 340–342.Google Scholar
  51. Dellaglio F, Dicks LMT& Torriani S (1995) The genus Leuconostoc. In: Wood BJB& Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria, vol. 2, (pp 235–278). Blackie Academic&Professional, LondonGoogle Scholar
  52. Delorme C, Godon J-J, Ehrlich SD& Renault P (1994) Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. Microbiology. 140: 3053–3060.Google Scholar
  53. Demoss RD, Bard RC& Gunsalus IC 1951. The mechanism of heterolactic fermentation: a new route of ethanol formation. J. Bacteriol. 62: 499–511.Google Scholar
  54. Dias B& Weimer B (1998a) Conversion of methionine to thiols by lactococci, lactobacilli, and brevibacteria. Appl. Environ. Microbiol. 64: 3320–3326.Google Scholar
  55. Dias B& Weimer B (1998b) Purification and characterization of methionine β-lyase from Brevibacterium linens BL2. Appl. Environ. Microbiol. 64: 3327–3331.Google Scholar
  56. Dicks LMT, du Plessis EM, Dellaglio F& Lauer E (1996) Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. Int. J. Syst. Bacteriol. 46: 337–340.Google Scholar
  57. Djordjevic GM, Tchieu & Saier MH (2001) Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J. Bacteriol. 183: 3224–3236.Google Scholar
  58. Dossonnet V, Monedero V, Zagorec M, Galinier A, Perez-Martinez G& Deutscher J (2000) Phosphorylation of HPr by the bifunctional HPr Kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J. Bacteriol. 182: 2582–2590.Google Scholar
  59. Dudez A-M, Chaillou S, Hissler L, Stentz R, Champomier-Verges M-C, Alpert C-A& Zagorec M 2002. Physiscal and genetic map of the Lactobacillus sakei 23K chromosome. Microbiology, 148: 421–431.Google Scholar
  60. Dunny G& McKay LL (1999) Group II introns and expression of conjugative transfer functions in lactic acid bacteria. Antonie van Leeuwenhoek 76: 77–88.Google Scholar
  61. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763.Google Scholar
  62. Favier CF, Vaughan EE, De Vos WM,& Akkermans AD (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68: 219–226.Google Scholar
  63. Felley CP, Corthésy-Theulaz I, Blanco Rivero J-L, Sipponen P, Kaufmann M, Bauerfeind P, Wiesel PH, Brassart D, Pfeifer A, Blum AL& Michetti P (2001) Favourable effect of an acidified milk (LC-1) on Heliocobacter pylori gastritis in man. Eur. J. Gastroenterol. Hepatol. 13: 25–29.Google Scholar
  64. Ferchichi M, Hemme D, Nardi M& Pamboukdjian N (1985) Production of methanethiol from methionine by Brevibacterium linens CNRZ 918. J. Gen. Microbiol. 131: 715.Google Scholar
  65. Fernandez-Espla MD, Garault P, Monnet V& Rul E (2000) Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 4772–4778.Google Scholar
  66. Ferrero M, Cesena C, Morelli L, Scolari G& Vescovo M (1996) Molecular characterization of Lactobacillus casei strains. FEMS Microbiol. Lett. 140: 215–219.Google Scholar
  67. Fonden R, Mogensen G, Tanaka R& Salminen S (2000) Effect of culture-containing dairy products on intestinal microflora, human nutrition and health-current knowledge and future perspectives. International Dairy Federation Bulletin number 352, IDF, Brussels.Google Scholar
  68. Forde A& Fitzgerald D (1999) Bacteriophage defense systems in lactic acid bacteria. Antonie van Leeuwenhoek 76: 89–113.Google Scholar
  69. Fox PF, McSweeney PLH& Lynch CM (1998) Significance of non-starter lactic acid bacteria in cheddar cheese. Aust. J. Dairy Technol. 53: 83–89.Google Scholar
  70. Fremaux C, Aigle M& Lonvaud FA (1993) Sequence analysis of Leuconostoc oenos DNA: organization of pLo13, a cryptic plasmid. Plasmid 30: 212–23.Google Scholar
  71. Fujisawa T, Benno Y, Yaeshima T& Mitsuoka T (1992) Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 with the type strain of Lactobacillus amylovorus. Int. J. System. Bacteriol. 42: 487–491.Google Scholar
  72. Garault P, Le Bars D, Besset C& Monnet V (2002) Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus. J. Biol. Chem. 277: 32–39.Google Scholar
  73. Garmyn D, Monnet C, Martineau B, Guzzo J, Cavin J-F& Divies C (1996) Cloning and sequencing of the gene encoding alphaacetolactate decarboxylase from Leuconostoc oenos. FEMS Microbiol. Lett. 145: 445–450.Google Scholar
  74. Garvie EI, Farrow JAE& Phillips BA (1981) A taxonomic study of some strains of streptococci which grow at 10 °C but not at 45 °C including Streptococcus lactis and Streptococcus cremoris. Zbl. Bakteriol. Hyg. I Abt. Orig. C 2: 151–165.Google Scholar
  75. Garvie EI (1986) Genus Leuconostoc. In: Sneath PHA, Mair NS, Sharpe ME& Holt JG (Eds), Bergey's Manual of Systematic Bacteriology, vol 2, 9th ed. (pp 1071–1075). Williams and Wilkins, Baltimore, MDGoogle Scholar
  76. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1–9.Google Scholar
  77. Germond JE, Delley M, D'Amico N& Vincent SL (2001) Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur. J. Biochem. 268: 5149–5156.Google Scholar
  78. Gill HS, Rutherfurd KJ, Prasad J& Gopal PK (2000) Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 83: 167–176.Google Scholar
  79. Gill HS, Rutherfurd KJ& Cross ML (2001a) Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J. Clin. Immunol. 21: 264–271.Google Scholar
  80. Gill HS, Shu Q, Lin H, Rutherfurd KJ& Cross ML (2001b) Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Med. Microbiol. Immunol. (Berlin) 190: 97–104.Google Scholar
  81. Gindreau E& Lonvaud-Funel A (1999) Molecular analysis of the region encoding the lytic system from Oenococcus oeni temperate bacteriophage variant phi10MC. FEMS Microbiol. Lett. 171: 231–238.Google Scholar
  82. Gindreau E, Torlois S& Lonvaud-Funel A (1997) Identification and sequence analysis of the region encoding the site-specific integration system from Leuconostoc oenos (Oenococcus oeni) temperate bacteriophage phi-10MC. FEMS Microbiol. Lett. 147: 279–285.Google Scholar
  83. Godon J, Delorme C, Ehrlich SD& Renault P (1992) Divergence of genomic sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp.cremoris. Appl. Environ. Microbiol. 58: 4045–4047.Google Scholar
  84. Gold RS, Meagher Mm, Tong S, Hutkins RW,& Conway T (1996) Cloning and expression of the Zymomonas mobilis 'Production of ethanol' genes in Lactobacillus casei. Curr. Microbiol. 33: 256–260.Google Scholar
  85. Goldin BR& Gorbach SL (1980) Effect of milk and Lactobacillus feeding on human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 39: 756–761.Google Scholar
  86. Goldin BR, Swenson L, Dwyer J, Sexton M& Gorbach S (1980) Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. J. Natl. Cancer Inst. 64: 255–261.Google Scholar
  87. Gonzalez CF& Kunka BS (1983) Plasmid transfer in Pediococcus spp.: Intergeneric and intrageneric transfer of pIP501. Appl. Environ. Microbiol. 46: 81–89.Google Scholar
  88. Gonzalez CF& Kunka BS (1986) Evidence for plasmid linkage of raffinose utilization and associated β-galactosidase and sucrose hydrolase activity in Pediococcus pentosaceus. Appl. Environ. Microbiol. 51: 105–109.Google Scholar
  89. Gopal PK, Prasad J, Smart J& Gill HS (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int. J. Food Microbiol. 67: 207–216.Google Scholar
  90. Gottschalk G (1986) Bacterial Metabolism, 2nd ed. Springer, New York.Google Scholar
  91. Graham DC& McKay LL (1985) Plasmid DNA in strains of Pediococcus cerevisiae and Pediococcus pentosaceus. Appl. Environ. Microbiol. 50: 532–534.Google Scholar
  92. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin AL& Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65: 1071–1077.Google Scholar
  93. Greene JD& Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Microbiol. 60: 4487–4494.Google Scholar
  94. Guedon G, Bourgoin F, Pebay M, Roussel Y, Colmin C, Simonet JM& Decaris B (1995) Characterization and distribution of two insertion sequences, IS 1191 and iso-IS 981, in Streptococcus thermophilus: does intergeneric transfer of insertion sequences occur in lactic acid bacteria co-cultures? Mol.Microbiol. 16: 69–78.Google Scholar
  95. Haller D, Blum S, Bode C, Hammes WP& and Schiffrin EJ (2000a) Activation of human PBMC by non-pathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect. Immun. 68: 752–759.Google Scholar
  96. Haller D, Bode C, Hammes WP, Pfeifer AMA, Schiffrin EJ& Blum S (2000b) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47: 79–87.Google Scholar
  97. Hammes WP& Vogel RF (1995) The genus Lactobacillus. In: Wood BJB& Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 19–54). Chapman&Hall, London.Google Scholar
  98. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG& Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30: 61–67.Google Scholar
  99. Hassan AN& Frank JF (2001) Starter cultures and their use. In: Marth EH& Steele JL (Eds) Applied Dairy Microbiology, 2nd edition (pp 151–206). Marcel Dekker, Inc, New York.Google Scholar
  100. Heilig HGH, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL& deVos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 14–123.Google Scholar
  101. Hols P, Slos P, Dutot P, Reymund J, Chabot P, Delplace B, Delcour J& Mercenier A (1997) Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiology 143: 2733–41.Google Scholar
  102. Hughes D (2000) Evaluating genome dynamics: The constraints on rearrangements within bacterial genomes. Genome Biol. 1: Reviews 0006. 1–0006.8.Google Scholar
  103. Hofvendahl K& Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87–107.Google Scholar
  104. Itoh T, Fujimoto Y, Kawai Y, Toba T& Saito T (1995) Inhibition of food-borne pathogenic bacteria by bacteriocins from Lactobacillus gasseri. Lett. Appl. Microbiol. 21: 137–141.Google Scholar
  105. Jiang TA, Mustapha A& Savaiano DA (1996) Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. J. Dairy Sci. 79: 750–757.Google Scholar
  106. Jobin M-P, Delmas F, Garmyn D, Divies C& Guzzo J. (1997) Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl. Environ. Microbiol. 63: 609–614.Google Scholar
  107. Jobin M-P, Garmyn D, Divies C& Guzzo J (1999) The Oenococcus oeni clpX homologue is a heat shock gene preferentially expressed in exponential growth phase. J. Bacteriol. 181: 6634–6641.Google Scholar
  108. Johnson JL, Phelps CF, Cummins CS, London J& Gasser F (1980) Taxonomy of the Lactobacillus acidophilus group. Int. J. System. Bacteriol. 30: 53–68.Google Scholar
  109. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49: 209–224.Google Scholar
  110. Kandler O& Weiss N (1986) Genus Lactobacillus. In: Sneath PHA, Mair NS, Sharpe ME& Holt JG (Eds.) Bergey's Manual of Systematic Bacteriology, vol 2, 9th ed. (pp 1063–1065). Williams and Wilkins, Baltimore, MD.Google Scholar
  111. Kaplan H& Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66: 2682–2684.Google Scholar
  112. Kim D& Day DF (1994) A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microb. Technol. 16: 844–48.Google Scholar
  113. Kim WJ, Ray B& Johnson MC (1992) Plasmid transfers by conjugation and electroporation in Pediococcus acidilactici. J. Appl. Bacteriol. 72: 201–207.Google Scholar
  114. Kirjavainen PV, El-Nezami HS, Salminen SJ, Ahokas JT& Wright PF (1999) The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunol. Med. Microbiol. 26: 131–135.Google Scholar
  115. Kitazawa H, Tomioka Y, Matsumura K, Aso H, Mizugaki M, Itoh T& Yamaguchi T (1994) Expression of mRNA encoding IFN alpha in macrophages stimulated with Lactobacillus gasseri. FEMS Microbiol. Lett. 120: 315–321.Google Scholar
  116. Klaenhammer TR& Russell WM (2000) Species of the Lactobacillus acidophilus complex. In: Robinson RK, Batt C& Patel PD (Eds) Encyclopedia of Food Microbiology, Vol. 2, (pp 1151–1157). Academic Press, San Diego, CA.Google Scholar
  117. Kosikowski FV (1982) Cheese and Fermented Milk Foods, 2nd edn. Kosikowski and Assoc., Brooktondale, NY.Google Scholar
  118. Kullen MJ, Sanozky-Dawes RB, Crowell DC& Klaenhammer TR (2000) Use of DNA sequence of variable regions of the 16Sr-RNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J. Appl. Microbiol. 89: 511–518.Google Scholar
  119. Kunkee RE (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol. Rev. 88: 55–72.Google Scholar
  120. Labarre C, Diviès C& Guzzo J (1996a) Genetic organization of the mle locus and identification of a mleR-like gene from Leuconostoc oenos. Appl. Environ. Microbiol. 62: 4493–4498.Google Scholar
  121. Labarre C, Guzzo J, Cavin JF& Diviès C (1996b) Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl. Environ. Microbiol. 62: 1274–1282.Google Scholar
  122. Lawrence RC, Thomas TD& Terzaghi BE (1976) Reviews of the progress of dairy science: cheese starters. J. Dairy Res. 43: 141–193.Google Scholar
  123. Leathers TD, Hayman GT& Cote GL 1995. Rapid screening of Leuconostoc mesenteroides mutants for elevated proportions of alternan to dextran. Curr. Microbiol. 31: 19–22.Google Scholar
  124. Le Bourgeois P, Lautier M, van den Berghe L, Gasson MJ& Ritzenthaler P (1995) Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL1403 reveals a large genome inversion. J. Bacteriol. 177: 2840–2850.Google Scholar
  125. Le Bourgeois P, Daveran-Mingot ML& Ritzenthaler P (2000) Genome plasticity among related Lactococcus strains: identification of genetic events associated with macrorestriction polymorphisms. J. Bacteriol. 182: 2481–2491.Google Scholar
  126. Leong-Morgenthaler P, Ruettener C, Mollet B&Hottinger H (1990) Construction of a physical map of Lactobacillus bulgaricus. Proc. Third Symp. Lactic Acid Bact. A28.Google Scholar
  127. Leuschner RG& Hammes WP (1998) Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese. J. Food Prot. 61: 874–878.Google Scholar
  128. Lima PT& Correia AM (2000) Genetic fingerprinting of Brevibacterium linens by pulsed-field gel electrophoresis and ribotyping. Curr. Microbiol. 41: 50–55.Google Scholar
  129. Link-Amster H, Rochat F, Saudan KY, Mignot O& Aeschlimann J-M (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10: 55–64.Google Scholar
  130. Luchansky JB, Muriana PM& Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus, and Propionibacterium. Mol. Microbiol. 2: 637–647.Google Scholar
  131. Maguin E, Prevost H, Ehrlich SD& Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J. Bacteriol. 178: 931–5.Google Scholar
  132. Marchand J& Vandenplas Y (2000) Microorganisms administered in the benefit of the host: myths and facts. Eur. J. Gastroenterol. Hepatol. 12: 1077–1088.Google Scholar
  133. Mariné-Font A, Vidal-Carou MC, Izquierdo-Pulido M, Venciana-Nogués MT& Hernández-Jover T (1995) Les amines biogénes dans les aliments: leur signification, leur analyse. Ann. Fals. Exp. Chim. 88: 11–140.Google Scholar
  134. Marteau P& Rambaud JC (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12: 207–222.Google Scholar
  135. Martinez-Murcia AJ& Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S ribosomal RNA. FEMS Microbiol. Lett. 70: 73–84.Google Scholar
  136. Matsuzaki T& Chin J (2000) Modulating immune responses with probiotic bacteria. Immunol. Cell. Biol. 78: 67–73.Google Scholar
  137. McKay LL (1985) Roles of plasmids in starter cultures. In: Gilliland SE (Ed) Bacterial Starter Cultures for Food (pp 159–174). CRC Press, Boca Raton, FL.Google Scholar
  138. Milk Industry Foundation (1998) Milk Facts. USA.Google Scholar
  139. Mitsuoka T (1992) The human gastrointestinal tract. In: Wood BJB (Ed) The Lactic Acid Bacteria, Vol. 1: The Lactic Acid Bacteria in Health and Disease (pp 69–114). Elsevier Science Publishers, Essex.Google Scholar
  140. Monedero V, Poncet S, Mijakovic I, Fieulaine S, Dossonnet V, Martin-Verstraete I, Nessler S& Deutscher J (2001) Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J. 20: 3928–3937.Google Scholar
  141. Moreno-Arribas V& Lonvaud-Funel A (2001) Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiol. Lett. 195: 103–107.Google Scholar
  142. Mori K, Yamazaki K, Ishiyama T, Katsumata M, Kobayashi K, Kawai Y, Inoue N& Shinano H (1997) Comparative sequence analyses of the genes coding for 16S rRNA of Lactobacillus casei-related taxa. Int. J. Syst. Bacteriol. 47: 54-57.Google Scholar
  143. Mundt JO (1970) Lactic acid bacteria associated with raw plant food material. J. Milk Food Technol. 33: 550–553.Google Scholar
  144. Mundt JO, Graham WF& McCarty IE (1967) Spherical lactic acid producing bacteria of southern-grown raw and processed vegetables. Appl. Microbiol. 15: 1303–1308.Google Scholar
  145. National Cheese Institute (1998) Cheese Facts. USA.Google Scholar
  146. Neeser J-R, Granato D, Rouvet M, Servin AL, Teneberg S& Karlsson K-A. (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology. 10: 1193–1199.Google Scholar
  147. Nicolas P, Bize L, Muri F, Hoebeke M, Rodolphe F, Ehrlich SD, Prum B& Bessières P (2002) Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res. 30: 1418–1426.Google Scholar
  148. Nielsen H, Engelbrecht J, Brunak S& von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1–6.Google Scholar
  149. Orla-Jensen S (1924) La classificationdes des bactéries lactiques. Lait 4: 468–474.Google Scholar
  150. O'Sullivan DJ (2001) Screening of intestinal microflora for effective probiotic bacteria. J. Agric. Food Chem. 49: 1751–1760.Google Scholar
  151. Park YH, Hori H, Suzuki K, Osawa S& Komagata K (1987) Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences. J. Bacteriol. 169: 1801–1806.Google Scholar
  152. Pasteur L (1861) Sur la fermentation visquese et la fermentation butyrique. Bull. Soc. Chim. Paris 11: 30–31.Google Scholar
  153. Pederson CS& Albury MN (1969) The sauerkraut fermentation. NY State Agric. Expt. Sta. (Geneva, NY) Tech. Bull. Bulletin 824.Google Scholar
  154. Pedrosa MC, Golner BB, Goldin BR, Barakat S, Dallal GE& Russell RM (1995) Survival of yogurt-containing organisms and Lactobacillus gasseriA (ADH) and their effect on bacterial enzyme activity in the gastrointestinal tract of healthy and hypocholorhydric elderly subjects. Am. J. Clin. Nutr. 61: 353–359.Google Scholar
  155. Pérez PF, Minnaard J, Rouvet M, Knabenhans C, Brassart D, De Antoni GL& Schiffrin EJ (2001) Inhibition of Giardia intestinalis by extracellular factors from Lactobacilli: an in vitro study. Appl. Environ. Microbiol. 67: 5037–5042.Google Scholar
  156. Perrin C, Guimont C, Bracquart P& Gaillard JL (1999) Expression of a new cold shock protein of 21.5 kDa and of the major cold shock protein by Streptococcus thermophilus after cold shock. Curr. Microbiol. 39: 342–347.Google Scholar
  157. Poolman B, Royer TJ, Mainzer SE& Schmidt BF (1989) Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J. Bacteriol. 171: 244–253.Google Scholar
  158. Pouwels PH, Leer RJ, Shaw M, Heijne den Bak-Glashouwer MJ, Tielen FD, Smit E, Martinez B, Jore J& Conway PL (1998) Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int. J. Food Microbiol. 41: 155–67.Google Scholar
  159. Prasad J, Gill HS, Smart JB& Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8: 993–1002.Google Scholar
  160. Rantsiou K, Phister T, McKay LL, Dunny G&Mills D (1999) Broad host range mobilization of plasmid derivatives by the lactococcal conjugal element pRS01. Proc. Sixth Symp. Lactic Acid Bact. E13.Google Scholar
  161. Rattray FP& Fox PF (1999) Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. J. Dairy Sci. 82: 891–909.Google Scholar
  162. Rattray FP, Fox PF& Healy A (1997) Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein. Appl. Environ. Microbiol. 63: 2468–2471.Google Scholar
  163. Reiter B& Oram JD (1982) Nutritional studies on cheese starter. 1. Vitamin and amino acid requirements of single strain starters. J. Dairy Res. 29: 63–68.Google Scholar
  164. Richards M& Macrae RM (1964) The significance of the use of hops in regard to the biological stability of beer . II. The development of resistance to hop resins by strains of lactobacilli. J. Inst. Brewing 70: 484–488.Google Scholar
  165. de Roos NM& Katan MB (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71: 405–411.Google Scholar
  166. softwar e/other/primer3.htmlGoogle Scholar
  167. Russell WM& Klaenhammer TR (2001a) Identification and cloning of gusA, encoding a new β-glucuronidase from Lactobacillus gasseri ADH. Appl. Environ. Microbiol. 67: 1253–1267.Google Scholar
  168. Russell WM& Klaenhammer TR (2001b) An efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosome via homologous recombination. Appl. Environ. Microbiol. 67: 4361–4364.Google Scholar
  169. Saavedra JM, Bauman NA, Oung I, Perman JA& Yolken RH (1994) Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344: 1046–1049.Google Scholar
  170. Salama M, Sandine WE& Giovannoni S (1991) Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57: 1313–1318.Google Scholar
  171. Salema M, Capucho I, Poolman B, San Romão MV& Dias MC (1996) In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni). J. Bacteriol. 178: 5537–5539.Google Scholar
  172. Sanders ME& Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319–331.Google Scholar
  173. Sandine WE (1988) New nomenclature of the non-rod-shaped lactic acid bacteria. Biochemie 70: 519–522.Google Scholar
  174. Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann J-M& Donnet-Hughes A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78: 491–497.Google Scholar
  175. Schleifer K-H (1987) Recent changes in the taxonomy of lactic acid bacteria. FEMS Microbiol. Rev. 46: 201–203.Google Scholar
  176. Schleifer KH& Ludwig W (1995) Phylogenetic relationships of lactic acid bacteria. In: Wood BJB& Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 7–18). Chapman&Hall, London.Google Scholar
  177. Serror P, Sasaki T, Ehrlich SD& Maguin E (2002) Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp . lactis with various plasmids. Appl. Environ. Microbiol. 68: 46–52.Google Scholar
  178. Server-Busson C, Foucaud C& Leveau J-Y (1999) Selection of dairy Leuconostoc isolates for improtant technological properties. J. Dairy Res. 66: 245–56.Google Scholar
  179. Sheih YH, Chiang BL, Wang LH, Liao CK& Gill HS (2001) Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J. Am. Coll. Nutr. 20(2 Suppl): 149–56.Google Scholar
  180. Simpson WJ& Taguchi H (1995) The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. In: Wood BJB& Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 125–172). Chapman&Hall, London.Google Scholar
  181. Slos P, Dutot P, Reymund J, Kleinpeter P, Prozzi D, Kieny MP, Delcour J, Mercenier A& Hols P (1998) Production of cholera toxin B subunit in Lactobacillus. FEMS Microbiol. Lett. 169: 29–36.Google Scholar
  182. Solow BT& Somkuti GA (2000) Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Curr. Microbiol. 42: 122–128.Google Scholar
  183. Stuart M, Chou L-S& Weimer BC (1998) Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 65: 665–673.Google Scholar
  184. Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW& Wells JM (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect. Immun. 66: 3183–3189.Google Scholar
  185. Sutherland IW (1996) Extracellular polysaccharides. In: Rehm H-J, Reed G, Puhler A& Stadler P (Eds) Biotechnology, 2nd ed., Vol 6: Products of Primary Metabolism (pp 613–657). VCH, New York.Google Scholar
  186. Tallgren AH, Airaksinen U, von Weissenberg R, Ojamo H, Kuusisto J& Leisola M (1999) Exopolysaccharide-producing bacteria from sugar beets. Appl. Environm. Microbiol. 65: 862–64.Google Scholar
  187. Takahashi T, Nakagawa E, Nara T, Yajima T& Kuwata T (1998) Effects of orally ingested Bifidobacterium longum on the mucosal IgA response of mice to dietary antigens. Biosci. Biotechnol. Biochem. 62: 10–15.Google Scholar
  188. Tannock GW(2000) Identification of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 1: 39–50.Google Scholar
  189. Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J& Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66: 2578–2588.Google Scholar
  190. Tatusov RL, DNatale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND& Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29: 22–28.Google Scholar
  191. Tejada-Simon MV& Pestka JJ (1999) Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J. Food Prot. 62: 1435–44.Google Scholar
  192. Tenreiro R, Santos MA, Paveia H& Vieira G (1994) Inter-strain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J. Appl. Bacteriol. 77: 271–280.Google Scholar
  193. Thompson JK, McConville KJ, McReynolds C& Collins MA (1999) Potential of conjugal transfer as a strategy for the introduction of recombinant genetic material into strains of Lactobacillus helveticus. Appl. Environ. Microbiol. 65: 1910–1914.Google Scholar
  194. Tissier H (1900) Recherches sur la flore intestinale des nourrissons (etat normal et pathologique) Paris Thèses: 1–253.Google Scholar
  195. Tissier H (1906) Traitement des infections intestinales par la méthode de la flore bactérienne de l'intestin. Crit. Rev. Soc. Biol. 60: 359–361.Google Scholar
  196. Tonon T, Bourdineaud J-P& Lonvaud-Funel A (2001) The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res. Microbiol. 152: 653–661.Google Scholar
  197. Tynkkynen S, Satokari R, Saarela M, Mattila-Sandholm T& Saxelin M (1999) Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl. Environ. Microbiol. 65: 3908–3914.Google Scholar
  198. Ummadi M& Weimer BC (2001) Tryptophan metabolism in Brevibacterium linens BL2. J. Dairy Sci. 84: 1773–1782.Google Scholar
  199. Valdes-Stauber N& Scherer S (1996) Nucleotide sequence and taxonomical distribution of the bacteriocin gene lin cloned from Brevibacterium linens M18. Appl. Environ. Microbiol. 62: 1283–1286.Google Scholar
  200. Vaughan EE, van den Bogaard PTC, Catzeddu P, Kuipers OP& de Vos WM (2001) Activation of silent gal genes in the lacgal regulon of Streptococcus thermophilus. J. Bacteriol. 183: 1184–1194.Google Scholar
  201. Vesa T, Pochart P and Marteau P (2000) Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis Mg 1363 in the human gastrointestinal tract. Aliment. Pharmacol. Ther. 14: 823–828.Google Scholar
  202. Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Perez-Martinez G& Deutscher J (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol. Microbiol. 36: 570–584.Google Scholar
  203. van Vuuren HJJ& Dicks LMT (1993) Leuconostoc oenos: A review. Am. J. Enol. Viticult. 44: 99–112.Google Scholar
  204. Wagner RD, Pierson C, Warner T, Dohnalek M, Hilty M& Balish E (2000) Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicanscolonized immunodeficient mice. J. Food Prot. 63: 638–644.Google Scholar
  205. Walker DC, Aoyama K& Klaenhammer TR (1996) Electrotransformation of Lactobacillus acidophilus group A1. FEMS Microbiol. Lett. 138: 233–237.Google Scholar
  206. Weimer BC, Yi X&Brown R (2000) Autocatalytic processing of the protease from Brevibacterium linens BL2: a kinetic analysis for the degradation of casein. International Dairy Federation Biennial Cheese Flavor Conference, Banff, Alberta.Google Scholar
  207. Wells JM, Robinson K, Chamberlain LM, Schofield km& Le Page RW (1996) Lactic acid bacteria as vaccine delivery vehicles. Antonie van Leeuwenhoek 70: 317–330.Google Scholar
  208. Yasui H, Shida K, Matsuzaki T& Yokokura T (1999) Immunomodulatory function of lactic acid bacteria. Antonie van Leeuwenhoek 76: 383–389.Google Scholar
  209. Ye JJ& Saier MH (1995) Cooperative binding of lactose and HPr(Ser-P) to the lactose:H+ permease of Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 92: 417–421.Google Scholar
  210. Ye JJ, Reizer J, Cui X& Saier MH (1994) ATP-dependent phosphorylation of serine in HPr regulates lactose:H+ symport in Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 91: 3102–3106.Google Scholar
  211. Yuki N, Watanabe K, Mike A, Tagami Y, Tanaka R, Ohwaki M& Morotomi M (1999) Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: selective isolation from faeces and identification using monoclonal antibodies. Int. J. Food Microbiol. 48: 51–57.Google Scholar
  212. Zapparoli G, Reguant C, Bordons A, Torriani S& Dellaglio F (2000) Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR. Curr. Microbiol. 40: 351–355.Google Scholar
  213. Ze-Ze L, Tenreiro R, Brito L, Santos MA& Paveia H (1998) Physical map of the genome of Oenococcus oeni PSU-1 and localization of genetic markers. Microbiology 144: 1145–1156.Google Scholar
  214. Ze-Ze L, Tenreiro R& Paveia H (2000) The Oenococcus oeni genome: Physical and genetic mapping of strain GMand comparison with the genome of a 'divergent' strain, PSU-1. Microbiology 146: 3195–3204.Google Scholar
  215. Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Gopal PK& Gill HS (2000a) Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem. Toxicol. 38: 153–61.Google Scholar
  216. Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Birtles MJ, Gopal PK& Gill HS (2000b) Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice. Int. J. Food Microbiol. 56: 87–96.Google Scholar
  217. Zhou JS, Gopal PK& Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int. J. Food Microbiol. 63: 81–90.Google Scholar
  218. Zuniga M, Pardo I& Ferrer S (1996) Transposons Tn916 and Tn925 can transfer from Enterococcus faecalis to Leuconostoc oenos. FEMS Microbiol. Lett. 135: 179–185.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Todd Klaenhammer
  • Eric Altermann
  • Fabrizio Arigoni
  • Alexander Bolotin
  • Fred Breidt
  • Jeffrey Broadbent
  • Raul Cano
  • Stephane Chaillou
  • Josef Deutscher
  • Mike Gasson
  • Maarten van de Guchte
  • Jean Guzzo
  • AxelHartke Hartke
  • Trevor Hawkins
  • Pascal Hols
  • Robert Hutkins
  • Michiel Kleerebezem
  • Jan Kok
  • James Steele
  • Daniel O'Sullivan
  • Willem de Vos
  • Bart Weimer
  • Monique Zagorec
  • Roland Siezen

There are no affiliations available

Personalised recommendations