Journal of Bioeconomics

, Volume 4, Issue 1, pp 57–88 | Cite as

Thermoeconomics: Beyond the Second Law

  • Peter A. Corning


Physicist Erwin Schrödinger's (1945) What is Life? has inspired many subsequent efforts to explain biological evolution, especially the evolution of complex systems, in terms of the Second Law of Thermodynamics and the concepts of ‘entropy’ and ‘negative entropy’. However, the problems associated with this paradigm are manifold. Here some of these problems will be highlighted and briefly critiqued. ‘Thermoeconomics’, by contrast, is based on the proposition that the role of energy in biological evolution should be defined and understood not in terms of the Second Law but in terms of such economic criteria as ‘productivity’, ‘efficiency’, and especially the costs and benefits (or ‘profitability’) of the various mechanisms for capturing and utilizing available energy to build biomass and do work. Thus thermoeconomics is fully consistent with the Darwinian paradigm. Economic criteria provide a better account of the advances (and recessions) in bioenergetic technologies than does any formulation derived from the Second Law.

cybernetics entropy information natural selection synergy thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Adams, Richard. 1975. Energy and structure. University of Texas Press, Austin.Google Scholar
  2. Ayres, Robert U. & Indira Nair. 1984. Thermodynamics and economics. Physics Today 37:62–71.Google Scholar
  3. Bennett, Charles H. 2000[1988]. Notes on the history of reversible computation. IBM Journal of Research and Development 44(1–2):70–77.Google Scholar
  4. Berndt, Ernest. 1978. Aggregate energy, efficiency, and productivity measurement. Annual Review of Energy 9:409–426.Google Scholar
  5. Berry, R. Stephen, Geoffrey Heal & Peter Salamon. 1978. On a relation between economic and thermodynamic optima. Resources and Energy 1:125–137.Google Scholar
  6. von Bertalanffy, Ludwig. 1952[1949]. Problems of Life: an evaluation of modern biological thought. John Wiley, New York.Google Scholar
  7. von Bertalanffy, Ludwig. 1968. General system theory: foundations, development, applications. George Braziller, New York.Google Scholar
  8. Blake, Robert W. (ed.) 1991. Efficiency and economy in animal physiology. Cambridge University Press, New York.Google Scholar
  9. Boltzmann, Ludwig. 1909. Wissenschafliche abhandlungen (3 vols.) (F. HasenoÈhrl ed.) J. A. Barth, Leipzig.Google Scholar
  10. Bonner, John Tyler. 1988. The evolution of complexity. Princeton University Press, Princeton, NJ.Google Scholar
  11. Boulding, Kenneth E. 1981. Evolutionary economics. Sage Publications, Beverly Hills, CA.Google Scholar
  12. Bridgman, Percy. 1941. The nature of thermodynamics. Harvard University Press, Cambridge.Google Scholar
  13. Brier, Sùren. 1992. Information and consciousness: a critique of the mechanistic concept of information. Cybernetics and Human Knowing 1(2/3):71–94.Google Scholar
  14. Brillouin, Leon. 1949. Life, thermodynamics and cybernetics. American Scientist 37:554–568Google Scholar
  15. Brillouin, Leon. 1968[1950]. Thermodynamics and information theory. Pp. 161–165 in W. Buckley (ed.) Modern Systems Research for the Behavioral Scientist, Aldine Publishing Company, Chicago.Google Scholar
  16. Broda, Engelbert. 1978. The evolution of bioenergetic processes. Pergamon Press, New York.Google Scholar
  17. Brooks, Daniel R. & E.O. Wiley. 1988. Evolution as entropy: toward a unified theory of biology (2nd. ed.). University of Chicago Press, Chicago.Google Scholar
  18. Bryant, J. 1982. A thermodynamic approach to economics. Energy Economics (January):36–49.Google Scholar
  19. Buckley, Walter. (ed.) 1968. Modern systems research fr the behavioral scientist. Aldine Publishing Co., Chicago.Google Scholar
  20. Carrier, David R. 1984. The energetic paradox of human running and hominid evolution. Current Anthropology 25:483–489.Google Scholar
  21. Clausius, Rudolph. 1864–1867. Abhandlungen uÈber die Mechanische WaÈrmetheorie. F. Vieweg und Sohn. Braunschweig.Google Scholar
  22. Collier, John. 1986. Entropy in evolution. Biology and Philosophy 1:5–24.Google Scholar
  23. Collier, John. 2000. Information theory as a general language for functional systems Computing Anticipatory Systems: CASYS '99, (American Institute of Physics) Conference Proceedings 517:124–130.Google Scholar
  24. Corning, Peter A. 1983. The synergism hypothesis: a theory of progressive evolution. McGraw-Hill, New York.Google Scholar
  25. Corning, Peter A. 1995. Synergy and self-organization in the evolution of complex systems. Systems Research 12:89–121.Google Scholar
  26. Corning, Peter A. 1996. The cooperative gene: on the role of synergy in evolution. Evolutionary Theory 11:183–207.Google Scholar
  27. Corning, Peter A. 1998a. `The Synergism Hypothesis': on the concept of synergy and its role in the evolution of complex systems. Journal of Social and Evolutionary Systems 21:133–172.Google Scholar
  28. Corning, Peter A. 1998b. Complexity is just a word! Technological Forecasting and Social Change 58:197–200.Google Scholar
  29. Corning, Peter A. 2001a. Nature's magic: synergy in evolution and the fate of humankind. in press.Google Scholar
  30. Corning, Peter A. 2001b. `Control information': the missing element in Norbert Wiener's cybernetic paradigm. Kybernetes 30(9/10):1272–1288.Google Scholar
  31. Corning, Peter A. & Stephen Jay Kline. 1998a. Thermodynamics, information and life revisited, part I: `to be or entropy.' Systems Research and Behavioral Science 15:273–295.Google Scholar
  32. Corning, Peter A. & Stephen Jay Kline. 1998b. Thermodynamics, information and life revisited, part II: `thermoeconomics' and `control information.' Systems Research and Behavioral Science 15:453–482.Google Scholar
  33. Costanza, Robert. 1980. Embodied energy and economic valuation. Science 210:1219–1224.Google Scholar
  34. Cottrell, Fred. 1953. Energy and society. McGraw Hill, New York.Google Scholar
  35. Cottrell, Fred. 1972. Technology, man and progress. Merrill, Columbus, OH.Google Scholar
  36. CsaÂnyi, Vilmos. 1998. Evolution: model or metaphor? Pp. 1–12 in G. Van de Vijver, S.N. Salthe & M. Delpos (ed.) Evolutionary Systems: Biological and Epistemological Perspectives in Selection and Self-organization, Kluwer, Academic Publishers, Dordrecht, Netherlands.Google Scholar
  37. Curtis, Helena & N. Sue Barnes. 1989. Biology (5th ed.). Worth Publishers, New York.Google Scholar
  38. Davis, Ged R. 1990. Energy for planet earth. Scientific American 263(3):55–62.Google Scholar
  39. Deamer, David W. (ed.) 1978. Light transcending membranes: structure, function and evolution. Academic Press, New York.Google Scholar
  40. Deamer, David W. & Juan Oro. 1980. Role of lipids in prebiotic structures. Biosystems 12:167–175.Google Scholar
  41. Deamer, David W. & R.M. Pashley. 1989. Amphiphilic components of the murchison carbonaceous chrondite: surface properties and membrane formation. Origins of Life 19:21–38.Google Scholar
  42. Depew, David J. & Weber, Bruce H. 1988. Consequences of nonequilibrium thermodynamics for the Darwinian tradition. Pp. 317–354 in B.H. Weber, D.J. Depew & J.D. Smith (ed.) Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge.Google Scholar
  43. Depew, David J. & Bruce H. Weber. 1995. Darwinism evolving: systems dynamics and the genealogy of natural selection. MIT Press, Cambridge.Google Scholar
  44. Dragan, Joseph C. & Mihai C. Demetrescu. 1986. Entropy and bioeconomics. Nagard Publishers, Pelham, NY.Google Scholar
  45. Dyson, Freeman J. 1971. Energy in the universe. In Energy and Power (A Scientific American Book). W.H. Freeman and Co., San Francisco.Google Scholar
  46. Eigen, Manfried & Peter Schuster. 1977. The hypercycle: a principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64:541–565.Google Scholar
  47. Faber, Malte. 1985. A biophysical approach to the economy: entropy, environment and resources. Pp. 315–335in W. van Gool & C. Bruggink (ed.) Energy and Time in the Economic and Physical Sciences, Elsevier Science Publishers B.V., New York.Google Scholar
  48. Fenchel, Tom. & Bland J. Finlay. 1994. The evolution of life without oxygen. American Scientist 82:22–29.Google Scholar
  49. Gage, D. Menahem Schiffer, Stephen Jay Kline & William C. Reynolds. 1966. The non-existence of a general thermokinetic variational principle. Pp. 283–286 in R.J. Donnelly, R. Herman & I. Prigogine (ed.) Non-equilibrium Thermodynamics: Variational Techniques and Stability, University of Chicago Press, Chicago.Google Scholar
  50. Georgescu-Roegen, Nicholas. 1971. The entropy law and economic process. Harvard University Press, Cambridge, MA.Google Scholar
  51. Georgescu-Roegen, Nicholas. 1976. Energy and economic myths: institutional and analytical economic essays. Pergamon Press, New York.Google Scholar
  52. Georgescu-Roegen, Nicholas. 1977a. Bioeconomics: a new look at the nature of economic activity. Pp. 105–134 in L. Junker (ed.) The Political Economy of Food and Energy, The University of Michigan Press, Ann Arbor, MI.Google Scholar
  53. Georgescu-Roegen, Nicholas. 1977b. The steady state and ecological salvation: a thermodynamic analysis. BioScience 27:266–270.Google Scholar
  54. Georgescu-Roegen, Nicholas. 1977c. Inequality, limits and growth from a bioeconomic viewpoint. Review of Social Economy 35:361–375.Google Scholar
  55. Georgescu-Roegen, Nicholas. 1979. Energy analysis and economic valuation. Southern Economic Journal 45:1023–1058.Google Scholar
  56. Giampietro, Mario, Sandra G.F. Bukkens & David Pimentel. 1993. Labor productivity: a biophysical definition and assessment. Human Ecology, 21:229–259.Google Scholar
  57. Gibbs, J. Willard. 1906. The scientific papers of J. Willard Gibbs (2 vols.). H.A. Bumstead & R. G. Van Name (ed.) Longmans, Green, New York.Google Scholar
  58. Gilliland, Martha W. 1975. Energy analysis and public policy. Science 189:1051–1056.Google Scholar
  59. Haisch, Bernhard, Alfonso Rueda & Harold E. Puthoff. 1994. Beyond E = mc2. The Sciences 34(6):26–31.Google Scholar
  60. Hannon, Bruce M. 1973. An energy standard of value. Annals of the American Academy of Political Science 410:139–153.Google Scholar
  61. Harold, Franklin M. 1986. The vital force: a study of bioenergetics. W.H. Freeman and Co., New York.Google Scholar
  62. Harvey, Paul H. 1986. Energetic costs of reproduction. Nature 321:648–649.Google Scholar
  63. Hawking, Stephen W. 1988. A brief history of time: from the big bang to black holes. Bantam Books, New York.Google Scholar
  64. Hess, Benno & Alexander Mikhailov. 1994. Self-organization in living cells. Science 264:223–224.Google Scholar
  65. Hoffmeyer, Jesper. 1997. Biosemiotics: towards a new synthesis in biology. European Journal for Semiotic Studies 9:355–376.Google Scholar
  66. Hopf, F. A. 1988. Entropy and evolution: sorting through the confusion. Pp. 263–274 in B.H. Weber, D.J. Depew & J.D. Smith (ed.) Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution. The MIT Press, Cambridge.Google Scholar
  67. Hubbert, M. King. 1971. The energy resources of the earth. Pp. 31–40 in Energy and Power (a Scientific American book), W.H. Freeman, San Francisco.Google Scholar
  68. Huettner, David A. 1976. Net energy analysis: an economic assessment. Science 192:101–14.Google Scholar
  69. Karasov, William H. & Jared. M. Diamond. 1985. Digestive adaptations for fueling the cost of endothermy. Science 228:202–204.Google Scholar
  70. Kauffman, Stuart A. 1995. At home in the universe: the search for the laws of self-organization and complexity. Oxford University Press, New York.Google Scholar
  71. Kauffman, Stuart A. 2000. Investigations. Oxford University Press, New York.Google Scholar
  72. Kline, Stephen Jay. 1995. Conceptual foundations for multidisciplinary thinking. Stanford University Press, Stanford, CA.Google Scholar
  73. Kline, Stephen Jay. 1997. The semantics and meaning of the entropies. Report CB-1, Department of Mechanical Engineering, Stanford University, Stanford, CA.Google Scholar
  74. Koestler, Arthur. 1967. The ghost in the machine. Macmillan, New York.Google Scholar
  75. Kushmerick, M.J. & R.E. Davies (F.R.S) 1969. The chemical energetics of muscle contraction (II) Proceedings of the Royal Society (London) 174:315–353.Google Scholar
  76. Layzer, David 1988. Growth of order in the universe. Pp. 23–40 in B.H. Weber, D.J. Depew & J.D. Smith (ed.) Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge, MA.Google Scholar
  77. Le Maho, Yvonne. 1977. The Emperor Penguin: a strategy to live and breed in the cold. American Scientist 65:680–693.Google Scholar
  78. Leff, Harvey S. & Andrew F. Rex. 1990. Maxwell's demon, entropy, information, computing. Princeton University Press, Princeton, NJ.Google Scholar
  79. Lehninger, Albert L. 1971. Bioenergetics: the molecular basis of biological energy transformations. Benjamin/Cummings, Menlo Park, CA.Google Scholar
  80. Lotka, Alfred J. 1922. Contribution to the energetics of evolution. Proceedings of the National Academy of Science 8:147–155.Google Scholar
  81. Lotka, Alfred J. 1945. The law of evolution as a maximal principle. Human Biology 17:167–194.Google Scholar
  82. Margulis, Lynn. 1993. Symbiosis in cell evolution, 2nd ed. W.H. Freeman, New York.Google Scholar
  83. Margulis, Lynn. 1998. Symbiotic planet: a new look at evolution. Basic Books, New York.Google Scholar
  84. Margulis, Lynn. & Dorion Sagan. 1995. What is life? Simon & Schuster (Peter N. Nevraumont), New York.Google Scholar
  85. Martin, William & MikloÂsMuÈller. 1998. The hydrogen hypothesis for the first eukaryote. Nature 391:37–41.Google Scholar
  86. Maxwell, James Clerk. 1871. Theory of heat. Longman's, Green and Co., London.Google Scholar
  87. Maynard Smith, John & EoÈrs SzathmaÂry. 1995. The major transitions in evolution. Freeman Press, Oxford.Google Scholar
  88. Mayr, Otto. 1970. The origins of feedback control. MIT Press, Cambridge.Google Scholar
  89. McClare, C.W.F. 1971. Chemical machines, Maxwell's demon and living organisms. Journal of Theoretical Biology 30:1–34.Google Scholar
  90. McClare, C.W.F. 1972. A `molecular energy' muscle model. Journal of Theoretical Biology 35:569–595.Google Scholar
  91. Miller, James G. 1995[1978]. Living systems. University Press of Colorado, Niwot, CO.Google Scholar
  92. Mirowski, Philip. 1988. Energy and energetics in economic theory: a review essay. Journal of Economic Issues 22:811–830.Google Scholar
  93. Mirowski, Philip. 1989. More heat than light: economics as social physics: physics as nature's economics. Cambridge University Press, Cambridge.Google Scholar
  94. Monod, Jacques. 1971. Chance and necessity (A. Wainhouse trans.) Knoff, New York.Google Scholar
  95. Morowitz, Harold J. 1968. Energy flow in biology. Academic Press, New York.Google Scholar
  96. Morowitz, Harold J. 1978a. Foundations of bioenergetics. Academic Press, New York.Google Scholar
  97. Morowitz, Harold J. 1978b. Proton semiconductors and energy transduction in biological systems. American Journal of Physiology 235:R99–114.Google Scholar
  98. Morowitz, Harold J. 1981. Phase separation, charge separation and biogenesis. Biosystems 14:41–47.Google Scholar
  99. Morowitz, Harold J. Bettina Heinz & David W. Deamer. 1987. The chemical logic of a minimum protocell. Origins of Life 18:281–287.Google Scholar
  100. Morowitz, Harold J. 1992. Beginnings of cellular life: metabolism recapitulates biogenesis. Yale University Press, New Haven.Google Scholar
  101. Nicholls, David G. & Stuart J. Ferguson. 1992. Bioenergetics 2. Academic Press, San Diego.Google Scholar
  102. Nicolis, Gregoire & Ilya Prigogine. 1977. Self-organization in non-equilibrium systems. Wiley, New York.Google Scholar
  103. Nicolis, Gregoire & Ilya Prigogine. 1989. Exploring complexity. W.H. Freeman, New York.Google Scholar
  104. No Èth, Winifred. 1990. Handbook of semiotics. Indiana Press, Bloomington.Google Scholar
  105. Odum, Eugene P. 1971. Fundamentals of ecology. W.B. Saunders, Philadelphia.Google Scholar
  106. Odum, Eugene P. 1983. Basic ecology. Saunders College Publications, Philadelphia.Google Scholar
  107. Odum, Howard T. 1971. Environment, power and society. John Wiley & Sons, London.Google Scholar
  108. Odum, Howard T. 1988. Self-organization, transformity and information. Science 242:1132–1139.Google Scholar
  109. Odum, Howard T. & Elizabeth C. Odum. 1982. Energy basis for man and nature (2nd ed.). McGraw-Hill, New York.Google Scholar
  110. Overbye, Dennis. 2002 The end of everything. The New York Times (Science Times), January 1D1, D7.Google Scholar
  111. Parsons, T.R. & B. Harrison. 1981. Energy utilization and evaluation. Journal of Social and Biological Structures 4:1–15.Google Scholar
  112. Penrose, Roger. 1989. The emperor's new mind: concerning computers, minds, and the laws of physics. Oxford University Press, New York.Google Scholar
  113. Perutz, Max F. 1987. Physics and the riddle of life. Nature 326:555–558.Google Scholar
  114. Powers, William T. 1973. Behavior: the control of perception. Aldine, Chicago.Google Scholar
  115. Prigogine, Ilya, Gregoire Nicolis & Agnes Babloyantz. 1972a. Thermodynamics of evolution (I). Physics Today 25:23–28.Google Scholar
  116. Prigogine, Ilya, Gregoire Nicolis & Agnes Babloyantz. 1972b. Thermodynamics of evolution (II). Physics Today 25:38–44.Google Scholar
  117. Prigogine, Ilya P. M. Allen. & R. Herman. 1977. The evolution of complexity and the laws of nature. Pp. 5–63 in E. Laszlo & J. Bierman (ed.) Goals in a Global Society, Pergamon, New York.Google Scholar
  118. Prigogine, Ilya. 1978. Time, structure and fluctuation. Science 201:777–84.Google Scholar
  119. Proops, John L.R. 1983. Organization and dissipation in economic systems. Journal of Social and Biological Structures 6:353–366.Google Scholar
  120. Proops, John L.R. 1985. Thermodynamics and economics: from analogy to physical functioning. Pp. 155–175 in W. van Gool & J.J.C. Bruggink (ed.) Energy and Time in Economic and Physical Sciences, Elsevier Science Publishers, B.V. New York.Google Scholar
  121. Proops, John L.R. 1987. Entropy, information and confusion in the social sciences. The Journal of Interdisciplinary Economics 1:225–242.Google Scholar
  122. Qvortrup, Lars. 1993. The controversy over the concept of information. Cybernetics and Human Knowing 1(4):3–24.Google Scholar
  123. Ridley, Mark. 2001. The cooperative gene: how Mendel's demon explains the evolution of complex beings. The Free Press, New York.Google Scholar
  124. Riedl, Rupert. 1978. Order in living organisms: a systems analysis of evolution (R.P.S. Jefferies, trans.) John Wiley & Sons, New York.Google Scholar
  125. Roberts, Paul C. 1982. Energy and value. Energy Policy 10:171–180.Google Scholar
  126. Salthe, Stanley N. 1993. Development and evolution: complexity and change in biology. MIT Press, Cambridge.Google Scholar
  127. Salthe, Stanley N. 1998. The role of natural selection in understanding evolutionary systems. Pp. 13–20 in G. Van de Vijver, S.N. Salthe & M. Delpos (ed.) Evolutionary Systems: Biological and Epistemological Perspectives in Selection and Self-Organization, Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  128. Schmidt-Nielsen, Knut S. 1972. How animals work. Cambridge University Press, Cambridge.Google Scholar
  129. Schneider, Eric D. & James J. Kay. 1994. Life as a manifestation of the second law of thermodynamics. Mathematical Computer Modeling 19:25–48.Google Scholar
  130. Schneider, Eric J. & James J. Kay. 1995. Order from disorder: the thermodynamics of complexity in biology. Pp. 161–173 in M.P. Murphy & L.A.J. O'Neill (ed.) What is Life? The Next Fifty Years. Cambridge University Press, New York.Google Scholar
  131. SchroÈdinger, Erwin. 1945. What is life? the physical aspect of the living cell. Macmillan, New York.Google Scholar
  132. Sebeok, Thomas A. 1986. The doctrine of signs. Journal of Social and Biological Structures 9:345–352.Google Scholar
  133. Shannon, Claude E. 1948. A mathematical theory of communication. Bell System Technical Journal 27:379–423, 623–656.Google Scholar
  134. Shannon, Claude E. & Warren Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana.Google Scholar
  135. Shapiro, James A. 1991. Genomes as smart systems. Genetica 84:3–4.Google Scholar
  136. Shapiro, James A. 1992. Natural genetic engineering in evolution. Genetica 86:99–111.Google Scholar
  137. Slesser, Malcolm. 1975. Accounting for energy. Nature 254:170–172.Google Scholar
  138. Soddy, Frederick. 1933. Wealth, virtual wealth and debt: the solution of the economic paradox. Dutton, New York.Google Scholar
  139. Swenson, Rod. 1989. Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution. Systems Research 6(3):187–197.Google Scholar
  140. SzathmaÂry, EoÈrs, Ferenc JordaÂn & Csaba PaÂl. 2001. Can genes explain biological complexity? Science 292(5520):1315–1316.Google Scholar
  141. Szilard, Leo. 1964[1929]. On the increase of entropy in a thermodynamic system by the intervention of intelligent beings (A. Rapoport & M. Knoller, trans.). Behavioral Science 9:302–310.Google Scholar
  142. Thaler, David S. 1994. The evolution of genetic intelligence. Science 264:224–225.Google Scholar
  143. Ulanowicz, Robert E. 1980. An hypothesis on the development of natural communities. Journal of Theoretical Biology 85:223–224.Google Scholar
  144. Ulanowicz, Robert E. 1983. Identifying the structure of cycling in ecosystems. Mathematical Bioscience 65:219–237.Google Scholar
  145. Ulanowicz, Robert E. 1986. Growth and development: ecosystems phenomenology. Springer-Verlag, New York.Google Scholar
  146. Van de Vijver, Gertrudis, Stanley N. Salthe & Manuela Delpos (ed.) 1998. Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  147. Van Gool, Willem & Jos J.C. Bruggink (ed.) 1985. Energy and time in the economic and physical sciences. North Holland, Amsterdam.Google Scholar
  148. Van Valen, Leigh. 1976. Energy and evolution. Evolutionary Theory 1:179–229.Google Scholar
  149. Weber, Bruce H., David J. Depew & James D. Smith. 1988. Entropy, information, and evolution: new perspectives on physical and biological evolution. The MIT Press, Cambridge.Google Scholar
  150. Wesley, James P. 1989. Life and thermodynamic ordering of the earth's surface. Evolutionary Theory 9:45–56.Google Scholar
  151. White, Leslie A. 1943. Energy and the evolution of culture. American Anthropologist 45:335–356.Google Scholar
  152. White, Leslie A. 1949. The science of culture: a study of man and civilization. Grove Press, New York.Google Scholar
  153. White, Leslie A. 1959. The evolution of culture. McGraw-Hill, New York.Google Scholar
  154. Wicken, Jeffrey S. 1987. Evolution, thermodynamics, and information: extending the Darwinian program. Oxford University Press, New York.Google Scholar
  155. Wicken, Jeffrey S. 1988. Thermodynamics, evolution, and emergence: ingredients for a new synthesis. Pp. 139–169 in B.H. Weber, D.J. Depew & J.D. Smith (ed.) Entropy, Information, and Evolution: New Perspectives on Physical and biological Evolution, MIT Press, Cambridge.Google Scholar
  156. Wicken, Jeffrey S. 1989. Evolution and thermodynamics: the new paradigm. Systems Research 6(3):181–186.Google Scholar
  157. Wiener, Norbert. 1948. Cybernetics: or control and communications in the animal and the machine. MIT Press, Cambridge, MA.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Peter A. Corning
    • 1
  1. 1.Institute for the Study of Complex SystemsPalo AltoUSA

Personalised recommendations