Journal of Mammalian Evolution

, Volume 6, Issue 2, pp 129–159 | Cite as

Evolution of Acoustic Communication Signals of Mammals: Friendly Close-Range Vocalizations in Felidae (Carnivora)

  • Gustav Peters
  • Barbara A. Tonkin-Leyhausen
Article

Abstract

The distribution of the three friendly close-range vocalization types known in the Felidae was plotted on a recently published phylogeny of the cat family (Felidae) based on sequence comparisons of two mitochondrial DNA genes and other molecular and biochemical characters, with extrapolated divergence ages of its various lineages. It was found to be congruent with this phylogeny. One of the sound types is likely to be present in 30 species of the family (documented in 22 so far), another is present in 4, and the third in 2 species only; these sound types represent a phylogenetic transformation series. The latter two vocalization types also differ considerably from the first in the mode of sound production. From this, evolutionary conservatism over a long epoch for the one widespread vocalization type can be inferred, and less conservatism in the type present in four species, while the emergence of the least common type is evidence of relatively considerable and rapid evolutionary change. Thus, acoustic communication signals in a group of taxa can evolve at considerably different rates, and for a specific character this rate can differ between different lineages of that group. The ultimate causes of the evolutionary stability or of the subsequent relatively rapid change in sound structure and mode of sound production in these felid vocalizations are unknown.

acoustic communication cats evolution Felidae vocalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Atz, J. W. (1970). The application of the idea of homology to behavior. In: Development and Evolution of Behavior, L. R. Aronson and E. Tobach, eds., pp. 53–74, W. H. Freeman, San Francisco.Google Scholar
  2. Bauers, K. A. (1993). A functional analysis of staccato grunt vocalizations in the stumptail macaque (Macaca arctoides). Ethology 94: 147–161.Google Scholar
  3. Beecher, M. D. (1988). Spectrographic analysis of animal vocalizations: Implications of the “uncertainty principle.” Bioacoustics 1: 187–208.Google Scholar
  4. Benveniste, R. E. (1985). The contributions of retroviruses to the study of mammalian evolution. In: Molecular Evolutionary Genetics, R. MacIntyre, ed., pp. 359–417, Plenum Press, New York.Google Scholar
  5. Brockelman, W. Y., and Schilling, D. (1984). Inheritance of stereotyped gibbon calls. Nature 312: 634–636.Google Scholar
  6. Cannatella, D. C., Hillis, D. M., Chippindale, P. T., Weigt, L., Rand, A. S., and Ryan, M. J. (1998). Phylogeny of frogs of the Physalaemus pustulosus species group, with an examination of data incongruence. Syst. Biol. 47: 311–335.Google Scholar
  7. Caro, T. M. (1994). Cheetahs of the Serengeti Plains. Group Living in an Asocial Species, University of Chicago Press, Chicago.Google Scholar
  8. Cheney, D. L., and Seyfarth, R. M. (1982). How vervet monkeys perceive their grunts: Field playback experiments. Anim. Behav. 30: 739–751.Google Scholar
  9. Cheney, D. L., and Seyfarth, R. M. (1990). How Monkeys See the World, University of Chicago Press, Chicago.Google Scholar
  10. Collier, G. E., and O'Brien, S. J. (1985). A molecular phylogeny of the Felidae: Immunological distance. Evolution 39: 473–487.Google Scholar
  11. De Queiroz, A., and Wimberger, P. H. (1993). The usefulness of behavior for phylogeny estimation: Levels of homoplasy in behavioral and morphological characters. Evolution 47: 46–60.Google Scholar
  12. Ehret, G. (1980). Development of sound communication in mammals. In: Advances in the Study of Animal Behavior, Vol. 11, J. S. Rosenblatt, R. A. Hinde, C. Beer, and M.-C. Busnel, eds., pp. 179–225, Academic Press, New York.Google Scholar
  13. Flynn, J. J. (1996). Carnivoran phylogeny and rates of evolution: Morphological, taxic, and molecular. In: Carnivore Behavior, Ecology, and Evolution, Vol. 2, J. L. Gittleman, ed., pp. 542–581, Cornell University Press, Ithaca, NY.Google Scholar
  14. Geissmann, T. (1984). Inheritance of song parameters in the gibbon song, analyzed in 2 hybrid gibbons (Hylobates pileatus × H. lar). Folia Primatol. 42: 216–235.Google Scholar
  15. Gingerich, P. D. (1983). Rates of evolution: Effects of time and temporal scaling. Science 222: 159–161.Google Scholar
  16. Gingerich, P. D. (1993). Quantification and comparison of evolutionary rates. Am. J. Sci. 293A: 453–478.Google Scholar
  17. Gittleman, J. L., Anderson, C. G., Kot, M., and Luh, H.-K. (1996a). Phylogenetic lability and rates of evolution: A comparison of behavioral, morphological and life history traits. In: Phylogenies and the Comparative Method in Animal Behavior, E. P. Martins, ed., pp. 166–205, Oxford University Press, New York.Google Scholar
  18. Gittleman, J. L., Anderson, C. G., Kot, M., and Luh, H.-K. (1996b). Comparative tests of evolutionary lability and rates using molecular phylogenies. In: New Uses for New Phylogenies, P. H. Harvey, A. J. Leigh Brown, J. Maynard Smith, and S. Nee, eds., pp. 289–307, Oxford University Press, Oxford.Google Scholar
  19. Goldman, D., and O'Brien, S. J. (1993). Two-dimensional protein electrophoresis in phylogenetic studies. Methods Enzymol. 224: 113–121.Google Scholar
  20. Härtel, R. (1975). Zur Struktur und Funktion akustischer Signale im Pflegesystem der Hauskatze (Felis catus L.). Biol. Zbl. 94: 187–204.Google Scholar
  21. Harcourt, A. H., Stewart, K. J., and Hauser, M. (1993). Functions of wild gorilla “close” calls. I. Repertoire, context, and interspecific comparison. Behaviour 124: 89–122.Google Scholar
  22. Hast, M. H. (1986). The larynx of roaring and non-roaring cats. J. Anat. 149: 221–222.Google Scholar
  23. Hast, M. H. (1989). The larynx of roaring and non-roaring cats. J. Anat. 163: 117–121.Google Scholar
  24. Hauser, M. D. (1996). The Evolution of Communication, MIT Press, Cambridge, MA.Google Scholar
  25. Hemmer, H. (1966). Untersuchungen zur Stammesgeschichte der Pantherkatzen (Pantherinae). Teil I. Veröff. zool. StSamml. Münch. 11: 1–121.Google Scholar
  26. Hemmer, H. (1968). Untersuchungen zur Stammesgeschichte der Pantherkatzen (Pantherinae). Teil II. Studien zur Ethologie des Nebelparders Neofelis nebulosa (Griffith 1821) und des Irbis Uncia uncia (Schreber 1775). Veröff. zool. StSamml. Münch. 12: 155–247.Google Scholar
  27. Hemmer, H. (1978). The evolutionary systematics of living Felidae: Present status and current problems. Carnivore 1: 71–79.Google Scholar
  28. Hemmer, H. (1981). Die Evolution der Pantherkatzen—Modell zur Überprüfung der Brauchbarkeit der HENNIGschen Prinzipien der phylogenetischen Systematik für wirbeltierpaläontologische Studien. Paläont. Z. 55: 109–116.Google Scholar
  29. Hunt, R. M. (1987). Evolution of the aeluroid Carnivora: Significance of the auditory structure in the nimravid cat Dinictis. Am. Mus. Novit. 2886: 1–74.Google Scholar
  30. Hunt, R. M. (1989). Evolution of the aeluroid Carnivora: Significance of the ventral promontorial process of the petrosal, and the origin of basicranial patterns in the living families. Am. Mus. Novit. 2930: 1–32.Google Scholar
  31. Hunt, R. M., and Tedford, R. H. (1993). Phylogenetic relationships within the aeluroid Carnivora and implications of their temporal and geographic distribution. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 53–73, Springer-Verlag, New York.Google Scholar
  32. Irwin, R. E. (1996). The phylogenetic content of avian courtship display and song evolution. In: Phylogenies and the Comparative Method in Animal Behavior, E. P. Martins, ed., pp. 234–252, Oxford University Press, New York.Google Scholar
  33. Jackson, P., and Farrell Jackson, A. (1996). Les Félins, Delachaux et Niestlé SA, Lausanne.Google Scholar
  34. Janczewski, D. N., Modi, W. S., Stephens, J. C., and O'Brien, S. J. (1995). Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the pantherine lineage of Felidae. Mol. Biol. Evol. 12: 690–707.Google Scholar
  35. Johnson, W. E., and O'Brien, S. J. (1997). Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J. Mol. Evol. 44(Suppl. 1): S98–S116.Google Scholar
  36. Johnson, W. E., Dratch, P. A., Martenson, J. C., and O'Brien, S. J. (1996). Resolution of recent radiations within three evolutionary lineages of Felidae using mitochondrial restriction fragment length polymorphism variation. J. Mammal. Evol. 3: 97–120.Google Scholar
  37. Kitchener, A. (1991). The Natural History of the Wild Cats, Christopher Helm, London.Google Scholar
  38. Kleiman, D. G., and Eisenberg, J. F. (1973). Comparisons of canid and felid social systems from an evolutionary perspective. Anim. Behav. 21: 637–659.Google Scholar
  39. Klingholz, F., and Meynhardt, H. (1979). Lautinventare der Säugetiere—diskret oder kontinuierlich? Z. Tierpsychol. 50: 250–264.Google Scholar
  40. Leyhausen, P. (1950). Beobachtungen an Löwen-Tiger-Bastarden, mit einigen Bemerkungen zur Systematik der Großkatzen. Z. Tierpsychol. 7: 46–83.Google Scholar
  41. Leyhausen, P. (1979). Cat Behavior, Garland STPM Press, New York.Google Scholar
  42. Machlis, L., Dodd, P. W. D., and Fentress, J. C. (1985). The pooling fallacy: Problems arising when individuals contribute more than one observation to the data set. Z. Tierpsychol. 68: 201–214.Google Scholar
  43. Martin, L. D. (1998). Felidae. In: Evolution of Tertiary Mammals of North America. Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, C. M. Janis, K. M. Scott, and L. L. Jacobs, eds., pp. 236–242, Cambridge University Press, Cambridge.Google Scholar
  44. Martin, P., and Bateson, P. (1993). Measuring Behaviour, Cambridge University Press, Cambridge.Google Scholar
  45. McCune, L., Vihman, M. M., Roug-Hellichius, L., Bordenave Delery, D., and Gogate, L. (1996). Grunt communication in human infants (Homo sapiens). J. Comp. Psychol. 110: 27–37.Google Scholar
  46. McDougal, C. (1977). The Face of the Tiger, Rivington Books, London.Google Scholar
  47. Miller, E. H. (1996). Acoustic differentiation and speciation in shorebirds. In: Ecology and Evolution of Acoustic Communication in Birds, D. E. Kroodsma and E. H. Miller, eds., pp. 241–257, Cornell University Press, Ithaca, NY.Google Scholar
  48. Modi, W. S., and O'Brien, S. J. (1988). Quantitative cladistic analyses of chromosomal banding data among species in three orders of mammals: Hominoid primates, felids and arvicolid rodents. In: Chromosome Structure and Function, J. P. Gustafson and R. Appels, eds., pp. 215–242, Plenum Press, New York.Google Scholar
  49. Movchan, V. N., and Opahova, V. R. (1981). Acoustic signals of cats (Felidae) living in the zoo [English summary]. Zool. Zh. 60: 601–608.Google Scholar
  50. Moynihan, M. (1970). The control, suppression, decay, disappearance, and replacement of displays. J. Theor. Biol. 29: 85–112.Google Scholar
  51. O'Brien, S. J., Collier, G. E., Benveniste, R. E., Nash, W. G., Newman, A. K., Simonson, J. M., Eichelberger, M. A., Seal, U. S., Janssen, D., Bush, M., and Wildt, D. E. (1987). Setting the molecular clock in Felidae: The great cats, Panthera. In: Tigers of the World—The Biology, Biopolitics, Management, and Conservation of an Endangered Species, R. L. Tilson and U. S. Seal, eds., pp. 10–27, Noyes, Park Ridge, NJ.Google Scholar
  52. O'Brien, S. J., Martenson, J. S., Miththapala, S., Janczewski, D., Pecon Slattery, J., Johnson, W., Gilbert, D. A., Roelke, M., Packer, C., Bush, M., and Wildt, D. E. (1996). Conservation genetics of the Felidae. In: Conservation Genetics: Case Histories from Nature, J. C. Avise and J. L. Hamrick, eds., pp. 50–74, Chapman & Hall, New York.Google Scholar
  53. Owen, R. (1834). On the anatomy of the cheetah, Felis jubata Schreb. Trans. Zool. Soc. Lond. 1: 129–136.Google Scholar
  54. Pecon Slattery, J., Johnson, W. E., Goldman, D., and O'Brien, S. J. (1994). Phylogenetic reconstruction of South American felids defined by protein electrophoresis. J. Mol. Evol. 39: 296–305.Google Scholar
  55. Peters, G. (1978). Vergleichende Untersuchung zur Lautgebung einiger Feliden (Mammalia, Felidae). Spixiana (Suppl.) 1: 1–283.Google Scholar
  56. Peters, G. (1980). The vocal repertoire of the snow leopard (Uncia uncia, Schreber 1775). Int. Pedigree Book Snow Leopards 2: 137–158.Google Scholar
  57. Peters, G. (1981). Das Schnurren der Katzen (Felidae). Säugetierk. Mitt. 29: 30–37.Google Scholar
  58. Peters, G. (1983). Beobachtungen zum Lautgebungsverhalten des Karakal, Caracal caracal (Schreber, 1776) (Mammalia, Carnivora, Felidae). Bonn. zool. Beitr. 34: 107–127.Google Scholar
  59. Peters, G. (1984a). A special type of vocalization in the Felidae. Acta Zool. Fenn. 171: 89–92.Google Scholar
  60. Peters, G. (1984b). On the structure of friendly close range vocalizations in terrestrial carnivores (Mammalia: Carnivora: Fissipedia). Z. Säugetierk. 49: 157–182.Google Scholar
  61. Peters, G. (1987). Acoustic communication in the genus Lynx (Mammalia: Felidae)—Comparative survey and phylogenetic interpretation. Bonn. zool. Beitr. 38: 315–330.Google Scholar
  62. Peters, G. (1991). Vocal communication in cats. In: Great Cats—Majestic Creatures of the Wild, J. Seidensticker and S. Lumpkin, eds., pp. 76–77, Rodale Press, Emmaus, PA.Google Scholar
  63. Peters, G., and Hast, M. H. (1994). Hyoid structure, laryngeal anatomy, and vocalization in felids (Mammalia: Carnivora: Felidae). Z. Säugetierk. 59: 87–104.Google Scholar
  64. Peters, G., and Wozencraft, W. C. (1989). Acoustic communication by fissiped carnivores. In: Carnivore Behavior, Ecology, and Evolution, J. Gittleman, ed., pp. 14–56, Cornell University Press, Ithaca, NY.Google Scholar
  65. Pocock, R. I. (1916). On the hyoidean apparatus of the lion (F. leo) and related species of the Felidae. Ann. Mag. Nat. Hist., 8th Ser. 18: 222–229.Google Scholar
  66. Reschke, B. (1960). Untersuchungen zur Lautgebung der Feliden. Diploma thesis, Humboldt-University, Berlin (unpublished).Google Scholar
  67. Richards, D. G., and Wiley, R. H. (1980). Reverberations and amplitude fluctuations in the propagation of sound in a forest: Implications for animal communication. Am. Nat. 115: 381–399.Google Scholar
  68. Romand, R., and Ehret, G. (1984). Development of sound production in normal, isolated and deafened kittens during the first postnatal months. Dev. Psychobiol. 17: 629–649.Google Scholar
  69. Salles, L. O. (1992). Felid phylogenetics: Extant taxa and skull morphology (Felidae, Aeluroidea). Am. Mus. Novit. 3047: 1–67.Google Scholar
  70. Schaller, G. B. (1967). The Deer and the Tiger: A Study of Wildlife in India, University of Chicago Press, Chicago.Google Scholar
  71. Schaller, G. B. (1972). The Serengeti Lion: A Study of Predator-Prey Relations, University of Chicago Press, Chicago.Google Scholar
  72. Scoville, R., and Gottlieb, G. (1978). The calculation of repetition rate in avian vocalizations. Anim. Behav. 26: 962–963.Google Scholar
  73. Snowdon, C. T., Elowson, A. M., and Roush, R. S. (1997). Social influences on vocal development in New World primates. In: Social Influences on Vocal Development, C. T. Snowdon and M. Hausberger, eds., pp. 234–248, Cambridge University Press, Cambridge.Google Scholar
  74. Stanger, K. F. (1995). Vocalizations of some cheirogaleid prosimians evaluated in a phylogenetic context. In: Creatures of the Dark—The Nocturnal Prosimians, L. Alterman, G. A. Doyle, and M. K. Izard, eds., pp. 353–376, Plenum Press, New York.Google Scholar
  75. Stewart, K. J., and Harcourt, A. H. (1994). Gorillas' vocalizations during rest periods: Signals of impending departure? Behaviour 130: 29–40.Google Scholar
  76. Tembrock, G. (1970). Bioakustische Untersuchungen an Säugetieren des Berliner Tierparkes. Milu 3: 78–96.Google Scholar
  77. Tembrock, G. (1996). Akustische Kommunikation bei Säugetieren—Die Stimmen der Säugetiere und ihre Bedeutung, Wissenschaftliche Buchgesellschaft, Darmstadt.Google Scholar
  78. Tonkin, B. A., and Kohler, E. (1981). Observations on the Indian desert cat Felis silvestris ornata in captivity. Int. Zoo Yrbk. 21: 151–154.Google Scholar
  79. Turner, A. (1987). New fossil carnivore remains from the Sterkfontein hominid site (Mammalia: Carnivora). Ann. Transv. Mus. 34: 319–347.Google Scholar
  80. Wayne, R. K., Benveniste, R. E., Janczewski, D. N., and O'Brien, S. J. (1989). Molecular and biochemical evolution of the Carnivora. In: Carnivore Behavior, Ecology, and Evolution, J. Gittleman, ed., pp. 465–494, Cornell University Press, Ithaca, NY.Google Scholar
  81. Wayne, R. K., van Valkenburgh, B., and O'Brien, S. J. (1991). Molecular distance and divergence time in carnivores and primates. Mol. Biol. Evol. 8: 297–319.Google Scholar
  82. Wemmer, C., and Scow, K. (1977). Communication in the Felidae with emphasis on scent marking and contact patterns. In: How Animals Communicate, T. A. Sebeok, ed., pp. 749–766, Indiana University Press, Bloomington.Google Scholar
  83. Wenzel, J. W. (1992). Behavioral homology and phylogeny. In: Annual Review of Ecology and Systematics, vol. 23, D. G. Fautin, D. J. Futuyma, and F. C. James, eds., pp. 361–381, Annual Reviews, Palo Alto, CA.Google Scholar
  84. Werdelin, L. (1981). The evolution of lynxes. Ann. Zool. Fenn. 18: 37–71.Google Scholar
  85. Werdelin, L. (1983). Morphological patterns in the skulls of cats. Biol. J. Linn. Soc. 19: 375–391.Google Scholar
  86. Werdelin, L. (1985). Small Pleistocene felines of North America. J. Vert. Paleontol. 5: 194–210.Google Scholar
  87. Werdelin, L. (1996). Carnivoran ecomorphology: A phylogenetic perspective. In: Carnivore Behavior, Ecology, and Evolution, Vol. 2, J. L. Gittleman, ed., pp. 582–624, Cornell University Press, Ithaca, NY.Google Scholar
  88. Werdelin, L., and Olsson, L. (1997). How the leopard got its spots: A phylogenetic view of felid coat patterns. Biol. J. Linn. Soc. 62: 383–400.Google Scholar
  89. Wimberger, P. H., and de Queiroz, A. (1996). Comparing behavioral and morphological characters as indicators of phylogeny. In: Phylogenies and the Comparative Method in Animal Behavior, E. P. Martins, ed., pp. 206–233, Oxford University Press, New York.Google Scholar
  90. Wozencraft, W. C. (1989). The phylogeny of the recent Carnivora. In: Carnivore Behavior, Ecology, and Evolution, J. Gittleman, ed., pp. 495–535, Cornell University Press, Ithaca, NY.Google Scholar
  91. Wozencraft, W. C. (1993). Order Carnivora. In: Mammal Species of the World. A Taxonomic and Geographic Reference, 2nd ed., D. E. Wilson and D. M. Reeder, eds., pp. 279–348, Smithsonian Institution Press, Washington, DC.Google Scholar
  92. Wyss, A., and Flynn, J. J. (1993). A phylogenetic analysis and definition of the Carnivora. In: Mammal Phylogeny: Placentals, F. Szalay, M. Novacek, and M. McKenna, eds., pp. 32–52, Springer-Verlag, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Gustav Peters
    • 1
  • Barbara A. Tonkin-Leyhausen
    • 2
  1. 1.Zoologisches Forschungsinstitut und Museum Alexander KoenigBonnGermany
  2. 2.Auf'm Driesch 22Windeck-HalscheidGermany

Personalised recommendations