, Volume 16, Issue 2, pp 331–339 | Cite as

Complexation of uranium (VI) by three eco-types of Acidithiobacillus ferrooxidans studied using time-resolved laser-induced fluorescence spectroscopy and infrared spectroscopy

  • Mohamed Larbi Merroun
  • Gerhard Geipel
  • Roswita Nicolai
  • Karl-Heinz Heise
  • Sonja Selenska-Pobell


Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was used to study the properties of uranium complexes (emission spectra and fluorescence lifetimes) formed by the cells of the three recently described eco-types of Acidithiobacillus ferrooxidans. The results demonstrated that these complexes have different lifetimes which increase in the same order as the capability of the strains to accumulate uranium. The complexes built by the cells of the eco-type II were the strongest, whereas, those of the eco-types I and III were significantly weaker. The emission spectra of all A. ferrooxidans complexes were almost identical to those of the uranyl organic phosphate compounds. The latter finding was confirmed by infrared spectroscopic analysis.

TRLFS IRS uranium Acidithiobacillus ferrooxidans eco-types 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres Y, MacCordick HJ, Hubert JC. 1994 Binding sites of sorbed uranyl ion in the cell wall of Mycobacterium smegmatis. FEMS Microbiol Lett 115, 27-32.Google Scholar
  2. Andres Y, MacCordick HJ, Hubert JC. 1995 Selective biosorption of thorium ions by an immobilized mycobacterial biomass. Appl Microbiol Biotechnol 44, 271-276.Google Scholar
  3. Bernhard G, Geipel G, Brendler V, Nitsche H. 1996 Speciation of uranium in seepage waters of a mine tailings pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 74, 87-91.Google Scholar
  4. Ferris FG, Beveridge TJ. 1986 Site specificity of metallic ion binding of Escherichia coli K-12 lipopolysaccharide. Can J Microbiol 32, 52-55.Google Scholar
  5. Flemming K, Kutschke S, Tzvetkova T, Selenska-Pobell S. 2000 Intraspecies diversity of Thiobacillus ferrooxidans strains recovered from uranium wastes. Report FZR 285, 51.Google Scholar
  6. Fourest E, Volesky B. 1996 Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30, 277-282.Google Scholar
  7. Fowle DA, Fein JB, Martin AM. 2000 Experimental study of uranyl adsorption onto Bacillus subtilis. Environ Sci Technol 34, 3737-3741.Google Scholar
  8. Francis AJ. 1998 Biotransformation of uranium and other actinides in radioactive wastes. J Alloys Compounds 271-273, 78-84.Google Scholar
  9. Francis CA, Bradley MT. 1999 Marine Bacillus spores as catalyst for oxidative precipitation and sorption of metals. J Mol Microbiol Biotechnol 1, 71-78.Google Scholar
  10. Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ. 2000 Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66, 2006-2011.Google Scholar
  11. Geipel G, Brachmann A, Brendler V, Bernhard G, Nitsche H. 1996 Uranium(VI) sulfate complexation studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS). Radiochim Acta 75, 199-204.Google Scholar
  12. Helm D, Labischinski H, Schallehn G, Naumann D. 1991 Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137, 69-79.Google Scholar
  13. Hennig C, Panak PJ, Reich T, Roßberg A, Raff J, Selenska-Pobell S, Matz W, Bucher JJ, Bernhard G, Nitsche H. 2001 EXAFS investigation of uranium (VI) complexes formed at Bacillus cereus and Bacillus sphaericus surfaces. Radiochim Acta 89, 625-631.Google Scholar
  14. Jeong BC, Hawes C, Bonthrone KM, Macaskie LE. 1997 Localization of enzymatically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Microbiology 143, 2497-2507.Google Scholar
  15. John SG, Ruggiero CE, Hersman LE, Tung C-S, Neu MP. 2001 Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environ Sci Technol 35, 2942-2948.Google Scholar
  16. Kimura T, Choppin GR. 1994 Luminescence study on determination of the hydration number of Cm(III). J Alloys Comp 213/214, 313-317.Google Scholar
  17. Klimmek S, Stan H-J. 2001 Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol 35, 4283-4288.Google Scholar
  18. Knopp R, Panak PJ, Wray LA, Renninger N, Keasling JD, Nitsche H. 2001 Investigation of interactions of U(VI) with bacteria by laser spectroscopic methods. 8th International Conference on Chemistry and Migration behavior of Actinides and Fission Products in the Geosphere. Migration' 01, 16-21 September, Bregenz, Austria. 111.Google Scholar
  19. Leduc LG, Trevors JT, Ferroni GD. 1993 Thermal characterization of different isolates of Thiobacillus ferrooxidans. FEMS Microbiol Lett 108, 189-194.Google Scholar
  20. Lloyd JR, Macaskie LE. 2000 Bioremediation of radionuclidecontaining wastewaters, In: Lovley DR, ed. Environmental Microbe-metal Interactions. Washington, DC: ASM Press; 277-327.Google Scholar
  21. Lovely DR, Phillips EJP. 1992 Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58, 850-856.Google Scholar
  22. Macaskie LE, Bonthrone KM, Yong P, Goddard D. 2000 Enzymatically-mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for extracellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146, 1855-1867.Google Scholar
  23. Martell AE, Smith RM. 1977 Critical stability constants III: other organic ligands. Plenum: New York.Google Scholar
  24. Merroun ML, Hennig C, Rossberg A, Reich T, Selenska-Pobell S. 2002 Characterization of U(VI)-Acidithiobacillus ferrooxidans complexes: EXAFS, electron microscopy and energy-dispersive X-ray analysis. Radiochim Acta (submitted).Google Scholar
  25. Merroun ML, Selenska-Pobell S. 2001 Interactions of three ecotypes of Acidithiobacillus ferrooxidans with U(VI). Biometals 14, 171-179.Google Scholar
  26. Naumann D, Helm D, Labischinski H. 1991 Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81-82.Google Scholar
  27. Nieboer E, Richardson DHS. 1980 The replacement of the nondescript term: heavy metals by a biologically and chemically significant classification of metal ions. Environ Pollut (Ser B) 1, 3-26.Google Scholar
  28. Pagnanelli F, Papini MP, Toro L, Trifoni M, Veglio F. 2000 Biosorption of metal ions on Arthrobacter sp.: Biomass characterization and biosorption modeling. Environ Sci Technol 34, 2773-2778.Google Scholar
  29. Panak P, Selenska-Pobell S, Kutschke S, Geipel G, Bernhard G, Nitsche H. 1999 Complexation of uranium U(VI) with cells of Thiobacillus ferrooxidans and Thiomonas cuprina of different geological origin. Radiochim Acta 84, 183-190.Google Scholar
  30. Panak P, Raff J, Selenska-Pobell S, Geipel G, Bernhard G, Nitsche H. 2000 Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile. Radiochim Acta 88, 71-76.Google Scholar
  31. Pearson RG. 1963 Hard and soft acid bases. J Am Chem Soc 84, 3533-3539.Google Scholar
  32. Rustenholtz A, Billard I, Duplatre G, Lützenkirchen K, Sémon L. 2001 Fluorescence spectroscopy of U(VI) in the presence of perchlorate ions. Radiochim Acta 89, 83-89.Google Scholar
  33. Selenska-Pobell. 2002 Diversity and activity of bacteria in uranium waste piles. In: Keith-Roach M, Livens F, eds. Interaction of Microorganisms with Radionuclides. Oxford: Elsevier Sciences; 225-253.Google Scholar
  34. Selenska-Pobell S, Flemming K, Radeva G. 2000 Direct detection and discrimination of different Thiobacillus ferrooxidans types in soil samples of a uranium waste pile. Report FZR 285, 52.Google Scholar
  35. Selenska-Pobell S, Flemming K, Kampf G, Radeva G, Satchanska G. 2001 Bacterial diversity in soil samples from two uranium waste piles as determined by rep-ARD, RISA and the 16S rDNA retrieval. Antonie van Leewenhoek 79, 149-161.Google Scholar
  36. Stumpf T, Bauer A, Coppin F, Kim J-I. 2001 Time-resolved fluorescence spectroscopy study of the sorption of cm(III) onto smectite and kaolinite. Environ Sci Technol 35, 3691-3694.Google Scholar
  37. Volesky B. 1990 Removal and recovery of heavy metals by biosorption. In: Volesky B, ed. Biosorption of heavy metals. Boca Raton, Florida: CRC Press; 7-44.Google Scholar
  38. Volesky B, Holan ZR. 1995 Biosorption of heavy metals. Biotechnol Prog 11, 235-250.Google Scholar
  39. Yun Y-S, Park D, Park JM, Volesky B. 2001 Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35, 4353-4358.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mohamed Larbi Merroun
    • 1
  • Gerhard Geipel
    • 1
  • Roswita Nicolai
    • 1
  • Karl-Heinz Heise
    • 1
  • Sonja Selenska-Pobell
    • 1
  1. 1.Institute of RadiochemistryDresdenGermany

Personalised recommendations