Advertisement

Journal of Atmospheric Chemistry

, Volume 43, Issue 3, pp 151–174 | Cite as

Atmospheric Loss Processes of Dimethyl and Diethyl Carbonate

  • Y. Katrib
  • G. Deiber
  • P. Mirabel
  • S. Le Calvé
  • C. George
  • A. Mellouki
  • G. Le Bras
Article

Abstract

A combined study of the OH gas phase reaction and uptake on aqueous surfacesof two carbonates, dimethyl and diethyl carbonate has been carried out todetermine the atmospheric lifetimes of these compounds. Rate coefficients havebeen measured for gas phase reactions of OH radicals with dimethyl and diethylcarbonate. The experiments were carried out using pulsed laser photolysis– laser induced fluorescence over the temperature range 263–372K and the kinetic data were used to derive the following Arrhenius expressions(in units of cm3 molecule−1 s−1):for dimethyl carbonate, k1 = (0.83±0.27)×10−12 exp [−(247± 98)/T] and fordiethyl carbonate, k2 = (0.46±0.15)×10−12 exp [(503± 203)/T]. At 298 K, therate coefficients obtained (in units of 10−12 cm3molecule−1 s−1) are: k1 =(0.35± 0.04) and k2 = (2.31± 0.29). The results arediscussed in terms of structure-activity relationships.The uptake coefficients of both carbonates on aqueous surfaces were measuredas a function of temperature and composition of the liquid phase, using thedroplet train technique coupled to a mass spectrometric detection. Dimethyland diethyl carbonate show very similar results. For both carbonates, themeasured uptake kinetics were found to be independent of the aqueous phasecomposition (pure water, NaOH solutions) but dependent on gas-liquid contacttime which characterises a surface saturation effect. The uptake coefficientvalues show a slight negative temperature dependence for both carbonates.These values vary from 1.4×10−2 to0.6×10−2 in the temperature range of 265–279 Kfor dimethyl carbonate, from 2.4×10−2 to0.9×10−2 in the temperature range of 270–279 Kfor diethyl carbonate. From the kinetic data, the following Henry's lawconstants were derived between 279 and 265 K: dimethyl carbonate,H1 = 20–106 M atm−1; and diethyl carbonate,H2 = 30–98 M atm−1. The reported data showthat the OH reaction is the major atmospheric loss process of these twocarbonates with lifetimes of 33 and 5 days, respectively, while the wetdeposition is a negligible process.

OH radicals rate coefficient uptake measurements dimethyl carbonate diethyl carbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R., 1987: A structure-activity relationship for the estimation of rate constants for the gasphase reactions of OH radicals with organic compounds, Int. J. Chem. Kinet. 19, 799.Google Scholar
  2. Atkinson, R., 1994: Gas-Phase Tropospheric Chemistry of Organic Compounds, J. Phys. Chem. Ref. Data Monograph 2, American Chemical Society, American Institute of Physics for the National Institute of Standards and Technology, Washington, Woodbury.Google Scholar
  3. Atkinson, R. and Carter, W. P. L., 1989: Kinetics and mechanisms of the gas phase reactions of ozone with organic compounds under atmospheric conditions, Chem. Rev. 84, 437.Google Scholar
  4. Baboobal, L. B., Pruppacher, H. R., and Topalian, J. H., 1981: A sensitivity study of a theoretical model of SO2 scavenging by water drops in air, J. Atmos. Sci. 38, 856.Google Scholar
  5. Bilde, M., Mogelberg, T. E., Sehested, J., Nielsen, O. J., Wallington, T. J., Hurley, M. D., Japar, S. M., Dill, M., Orkin, V. L., Buckley, T. J., Huie, R. E., and Kurylo, M. J., 1997: Atmospheric chemistry of dimethyl carbonate: Reaction with OH radicals, UV spectra of CH3OC(O)OCH2 and CH3OC(O)OCH2O2 radicals, reactions of CH3OC(O)OCH2O2 with NO and NO2, and fate of CH3OC(O)OCH2O radicals, J. Phys. Chem. A 101, 3514.Google Scholar
  6. Brimblecombe, P. and Dawson, G. A., 1985: The solubility and behaviour of acid gases in the marine aerosol, J. Atmos. Chem. 2, 95.Google Scholar
  7. Buttery, R. G., Ling, J. L., and Guadagni, D. G., 1969: Volatilities of aldehydes, ketones, and esters in dilute water solutions, J. Agric. Food Chem. 17, 385.Google Scholar
  8. Calvert, J. and Pitts, J. N. J., 1966: Photochemistry, Wiley, New York.Google Scholar
  9. Crandall, J. W., 1987: Process for the Hydrolysis of Dialkyl Carbonates, U.S. patent 4,66,477.Google Scholar
  10. Donahue, N. M., Anderson, J. G., and Demerjian, K. L., 1998: New rate constants for ten OH alkane reactions from 300 to 400 K: An assessment of accuracy, J. Phys. Chem. A. 102, 3121.Google Scholar
  11. Ervens, B., Buxton, G. V., Salmon, G. A., Williams, J., Dentener, F., George, C., Mirabel, P., and Hermann, H., 2001: An Extended and Condensed Tropospheric Aqueous Phase Mechanism and Its Application, in preparation.Google Scholar
  12. Fuchs, N. A. and Sutugin, A. G., 1971: Highly dispersed aerosols, in Hidy, G. M. and Brock, J. R. (eds.), International Reviews of Aerosol Physics and Chemistry, p. 1.Google Scholar
  13. George, G., 1993: Physico-chimie hétérogène de l'atmosphère: Étude expérimentale et modélisation des processus de transfert gas/liquide, Thèse de doctorat, Université Louis Pasteur de Strasbourg. Hine, J. and Mookerjee, P. K., 1975: The intrinsic hydrophilic character of organics compounds, J. Org. Chem. 40, 292.Google Scholar
  14. Janini, G. M. and Quaddora, L. A., 1986: Determination of activity coefficients of oxygenated hydrocarbons by liquid-liquid chromatography, J. Liq. Chromato. 9, 39.Google Scholar
  15. Kolb, C. E., Worsnop, D. R., Jayne, J. T., and Davidovits, P., 1998: Comment on mathematicalmodels of the uptake of ClONO2 and other cases by atmospheric aerosols,. Aerosol Sci. 29, 893.Google Scholar
  16. Kolb, C. E., Worsnop, D. R., Zahniser, M. S., Davidovits, P., Hanson, D. R., Ravishankara, A. R., Keyser, L. F., Leu, M. T., Williams, L. R., Molina, M. J., and Tolbert, M. A., 1994: Laboratory studies of atmospheric heterogeneous chemistry, in Advances in Physical Chemistry Series, World Scientific, Singapore, p. 771.Google Scholar
  17. Kwok, E. S. C. and Atkinson, R., 1995: Estimation of hydroxyl radical reaction rate constants for gasphase organic compounds using a structure-reactivity relationship: An update, Atmos. Environ. 29, 1685.Google Scholar
  18. Langer, S., Ljungstrom, E., and Wangberg, I., 1993: Rates of reaction between the nitrate radical and some aliphatic esters, J. Chem. Soc. Faraday Trans. 89, 425.Google Scholar
  19. Liss, P. S. and Slater, P. G., 1974: Flux of gases across the air-sea interface, Nature 247, 181.Google Scholar
  20. Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C., 1997: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. Chem. A 101, 4943.Google Scholar
  21. Mellouki, A., Téton, S., Laverdet, G., Quilgars, A., and LeBras, G., 1994: Kinetic studies of OH reactions with H2O2, C3H8 and CH4 using the pulsed laser photolysis - laser induced fluorescence method, J. Chim. Phys. 91, 473.Google Scholar
  22. Mellouki, A., Téton, S., and LeBras, G., 1995: Kinetics of OH radical reactions with a series of ethers, Int. J. Chem. Kinet. 27, 791.Google Scholar
  23. Meylan, M. and Howard, P. H., 1991: Bond Contribution method for estimating Henry's law constants, J. Toxicol. Chem. 10, 1283.Google Scholar
  24. Nathanson, G. M., Davidovits, P., Worsnop, D. R., and Kolb, C. E., 1996: Dynamics and kinetics at the gas-liquid interface, J. Phys. Chem. A 100, 13007.Google Scholar
  25. Pacheco, M. A. and Marshall, C. L., 1997: Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive, Energy and Fuels 11, 2.Google Scholar
  26. Parraudin, E. and George, C., 2001: A steady-state flowtube approach for studying aqueous phase OH kinetics, in A Changing Atmosphere, 8th European Symposium on the Physico-Chemical Behaviour of Air Pollutants, Torino, Italy.Google Scholar
  27. Pruppacher, H. R. and Klett, J. D., 1978: Microphysics of Clouds and Precipitations, Reidel Publishing Co., Dordrecht, Holland.Google Scholar
  28. Reid, R. C., Prausnitz, J. M. and Poling, B. E., 1987: The Properties of Gases and Liquids, McGraw-Hill, New York.Google Scholar
  29. Schweitzer, F., Mirabel, P., and George, C., 1998: Multiphase chemistry of N2O5, ClNO2, and BrNO2, J. Phys. Chem. A 102, 3942.Google Scholar
  30. Seinfeld, J. H. and Pandis, S. N., 1998: Atmospheric Chemistry and Physics, Wiley, New York.Google Scholar
  31. Staudinger, J. and Roberts, P. J., 1996: A critical review of Henry's law constants for environmental applications, Crit. Rev. Environ. Sci. Technol. 26, 205.Google Scholar
  32. Wallington, T. J. and Kurylo, M. J., 1987: Flash photolysis resonance fluorescence investigation of the gas-phase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240-440 K, J. Phys. Chem. A 91, 5050.Google Scholar
  33. Wenger, J., Porter, E., Collins, E., Treacy, J., and Sidebottom, H., 1999: Mechanisms for the chlorine atom initiated oxidation of dimethoxymethane and 1,2-dimethoxyethane in the presence of Nox, Chemosphere 38, 1197.Google Scholar
  34. Wollenhaupt, M., Carl, S. A., Horowitz, A., and Crowley, J. N., 2000: Rate coefficients for reaction of OH with acetone between 202 and 395 K, J. Phys. Chem. A 104, 2695.Google Scholar
  35. Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Jayne, J. T., Watson, L. R., Van Doren, J. M., and Davidovits, P., 1989: Temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces, J. Phys. Chem. A 93, 1159.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Y. Katrib
    • 1
  • G. Deiber
    • 1
  • P. Mirabel
    • 1
  • S. Le Calvé
    • 1
  • C. George
    • 2
  • A. Mellouki
    • 2
  • G. Le Bras
    • 2
  1. 1.Centre de Géochimie de la SurfaceCNRS and Université Louis PasteurStrasbourgFrance
  2. 2.Laboratoire d'Application de la Chimie à l'Environnement (LACE)VilleurbanneFrance

Personalised recommendations