Journal of Biomolecular NMR

, Volume 24, Issue 1, pp 41–50 | Cite as

Novel projected 4D triple resonance experiments for polypeptide backbone chemical shift assignment

  • Youlin Xia
  • Cheryl H. Arrowsmith
  • Thomas Szyperski
Article

Abstract

Here we present a novel suite of projected 4D triple-resonance NMR experiments for efficient sequential assignment of polypeptide backbone chemical shifts in 13C/15N doubly labeled proteins. In the 3D HNN[CAHA] and 3D HNN(CO)[CAHA] experiments, the 13Cα and 1Hα chemical shifts evolve in a common dimension and are simultaneously detected in quadrature. These experiments are particularly useful for the assignment of glycine-rich polypeptide segments. Appropriate setting of the 1H radiofrequency carrier allows one to place cross peaks correlating either backbone 15N/1HN/13Cα or 15N/1HN/1Hα chemical shifts in separate spectral regions. Hence, peak overlap is not increased when compared with the conventional 3D HNNCA and HNN(CA)HA. 3D HNN[CAHA] and 3D HNN(CO)[CAHA] are complemented by 3D reduced-dimensionality (RD) HNN COCA and HNN CACO, where 13Cα and 13C′ chemical shifts evolve in a common dimension. The 13Cα shift is detected in quadrature, which yields peak pairs encoding the 13C′ chemical shift in an in-phase splitting. This suite of four experiments promises to be of value for automated high-throughput NMR structure determination in structural genomics, where the requirement to independently sample many indirect dimensions in a large number of NMR experiments may prevent one from accurately adjusting NMR measurement times to spectrometer sensitivity.

automated protein NMR assignment protein structure reduced-dimensionality triple-resonance experiments resolution enhancement structural genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boelens, R., Burgering, M., Fogh, R.H. and Kaptein, R. (1994) J. Biomol. NMR, 4, 201–213.Google Scholar
  2. Boucher, W., Laue, E.D., Campbell-Burk, S. and Domaille, P.J. (1992a) J. Am. Chem. Soc., 114, 2262–2264.Google Scholar
  3. Boucher, W., Laue, E.D., Campbell-Burk, S. and Domaille, P.J. (1992b) J. Biomol. NMR, 2, 631–637.Google Scholar
  4. Brutscher, B., Simorre, J.P., Caffrey, M.S. and Marion, D. (1994) J. Magn. Reson., B105, 77–82.Google Scholar
  5. Brutscher, B., Cordier, F., Simorre, J.P., Caffrey, M.S. and Marion, D. (1995) J. Biomol. NMR, 5, 202–206.Google Scholar
  6. Buchler, N.E.G., Zuiderweg, E.R.P., Wang, H. and Goldstein, R.A. (1997) J. Magn. Reson., 125, 34–42.Google Scholar
  7. Cavanagh, J., Fairbrother, W.J., Palmer III, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy. Wiley, New York.Google Scholar
  8. Clubb, R.T., Thanabal, V. and Wagner, G. (1992) J. Biomol. NMR, 2, 203–210.Google Scholar
  9. Geen, H. and Freeman, R.J. (1991) J. Magn. Reson., 93, 93–141.Google Scholar
  10. Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593–12594.Google Scholar
  11. Hu, W.D., Gosser, Y.Q., Xu, W.J. and Patel, D.J. (2001) J. Biomol. NMR, 20, 167–172.Google Scholar
  12. Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.Google Scholar
  13. Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.Google Scholar
  14. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.Google Scholar
  15. Konrat, R., Yang, D. and Kay, L.E. (1999) J. Biomol. NMR, 15, 309–313.Google Scholar
  16. Mariani, M., Tessari, M., Boelens, R., Vis, H. and Kaptein, R. (1994) J. Magn. Reson., B104, 294–297.Google Scholar
  17. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  18. Matsuo, H., Kupce, E., Li, H. and Wagner, G. (1996) J. Magn. Reson., B113, 91–96.Google Scholar
  19. McCoy, M.A. and Mueller, L. (1992a) J. Am. Chem. Soc., 114, 2108–2112.Google Scholar
  20. McCoy, M.A. and Mueller, L. (1992b) J. Magn. Reson., 99, 18–36.Google Scholar
  21. Montelione, G.T. and Wagner, G. (1989) J. Am. Chem. Soc., 111, 5474–5475.Google Scholar
  22. Montelione, G.T., Zheng, D., Huang, Y., Gunsalus, C. and Szyperski, T. (2000) Nat. Struct. Biol., 7, 982–984.Google Scholar
  23. Moseley, H.N.M., Tejero, R., Zimmerman, D.E., Celda, B., Nilsson, B. and Montelione, G.T. (2002) Methods Enzymol., 339, 91–108.Google Scholar
  24. Pang, Y.X., Zeng, L., Kurochkin, A.V. and Zuiderweg, E.R.P. (1998) J. Biomol. NMR, 11, 185–190.Google Scholar
  25. Pascal, S.M., Muhandiram, D.R., Yamazaki, T., Forman-Kay, J.D. and Kay, L.E. (1994) J. Magn. Reson., 103, 197–201.Google Scholar
  26. Sørensen, O.W., Eich, G.W., Levitt, M.H., Bodenhausen, G. and Ernst, R.R. (1983) Prog. NMR Spectrosc., 16, 163–192.Google Scholar
  27. Szyperski, T., Wider, G., Bushweller, J.H. and Wüthrich, K. (1993a) J. Biomol. NMR, 3, 127–132.Google Scholar
  28. Szyperski, T., Wider, G., Bushweller, J.H. and Wüthrich, K. (1993b) J. Am. Chem. Soc., 115, 9307–9308.Google Scholar
  29. Szyperski, T., Luginbühl, P., Otting, G., Güntert, P. and Wüthrich, K. (1993c) J. Biomol. NMR, 3, 151–164.Google Scholar
  30. Szyperski, T., Pellecchia, M. and Wüthrich, K. (1994) J. Magn. Reson., B105, 188–191.Google Scholar
  31. Szyperski, T., Braun, D., Fernandez, C., Bartels, C. and Wüthrich, K. (1995) J. Magn. Reson.,B108, 197–203.Google Scholar
  32. Szyperski, T., Braun, D., Banecki, B. and Wüthrich, K. (1996) J. Am. Chem. Soc., 118, 8146–8147.Google Scholar
  33. Szyperski, T., Banecki, B., Braun, D. and Glaser, R.W. (1998) J. Biomol. NMR, 11, 387–405.Google Scholar
  34. Szyperski, T., Yeh, D.C., Sukumaran, D.K., Moseley, H.N.B. and Montelione, G.T. (2002) Proc. Natl. Acad. Sci. USA, 99, 8009–8014.Google Scholar
  35. Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. (1994) J. Am. Chem. Soc., 116, 11655–11666.Google Scholar
  36. Yang, D. and Kay, L.E. (1999) J. Am. Chem. Soc., 121, 2571–2575.Google Scholar
  37. Yee, A., Chang, X., Pineda-Lucena, A., Wu, B., Semesi, A., Le, B., Ramelot, T., Lee, G.M., Bhattacharyya, S., Gutierrez, P., Denisov, A., Lee, C.-H., Cort, J.R., Kozlov, G., Liao, J., Finak, G., Chen, L., Wishart, D., Lee, W., McIntosh, L.P., Gehring, K., Kennedy, M.A., Edwards, A.M. and Arrowsmith, C.H. (2002) Proc. Natl. Acad. Sci. USA, 99, 1825–1830.Google Scholar
  38. Zhu, G., Xia, Y., Nicholson, L.K. and Sze, K.H. (2000) J. Magn. Reson., 143, 423–426.Google Scholar
  39. Zimmerman, D.E., Kulikowski, C.A., Huang, Y., Feng, W., Tashiro, M., Shimotakahara, A., Chien, C.Y., Powers, R. and Montelione, G.T. (1997) J. Mol. Biol., 269, 592–610.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Youlin Xia
    • 1
    • 2
  • Cheryl H. Arrowsmith
    • 1
    • 2
  • Thomas Szyperski
    • 3
    • 2
  1. 1.Ontario Cancer Institute and Department of Medical BiophysicsThe University of TorontoTorontoCanada
  2. 2.The Northeast Structural Genomics ConsortiumUSA
  3. 3.Department of ChemistryUniversity of HoustonHoustonU.S.A

Personalised recommendations