Russian Journal of Genetics

, Volume 38, Issue 10, pp 1176–1180 | Cite as

Mitochondrial DNA Variation in Goldfish Carassius auratus gibelio from Far Eastern Water Reservoirs

  • Vl. A. Brykov
  • N. E. Polyakova
  • L. A. Skurikhina
  • S. M. Dolganov
  • M. G. Eliseikina
  • M. Yu. Kovalev
Article

Abstract

MtDNA variation of goldfish samples from several reservoirs of Southern Primorye was examined by RFLP analysis. High mtDNA polymorphism was found in the river populations but not in the lake ones. Considerable among-haplotype divergence was found within samples, which suggests periodic gene exchange between populations having long histories of independent evolution. The absence of substantial differences between clusters of mtDNA haplotypes indicates recurrent transfer from bisexual to gynogenetic reproduction mode and vice versa.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Avise, J.C., Molecular Markers, Natural History and Evolution, New York: Chapman and Hall, 1994.Google Scholar
  2. 2.
    Golovinskaya, K.A., Romashov, D.D., and Cherfas, N.B., Unisexual and Bisexual Forms of Silver Crucian Carp Carassius auratus gibelio Bl., Vopr. Ikhtiol. 1965, vol. 5, no. 4, pp. 614-629.Google Scholar
  3. 3.
    Kirpichnikov, V.S., Genetika i selektsiya ryb (Fish Genetics and Breeding), Leningrad: Nauka, 1987.Google Scholar
  4. 4.
    Fister, S. and Soldatovic, B., Karyotype Analysis of a Gynogenetic Population of Carassius auratus gibelio Bloch (Cyprinidae) from Pancevacki Rit, Acta Vet. 1979, vol. 39, nos. 5-6, pp. 259-268.Google Scholar
  5. 5.
    Ohara, K., Ariyoshi, T., Simuda, E., et al., Natural Hybridization between Diploid Crucian Carp Species and Genetic Independence of Triploid Crucian Carp Elucidated by DNA Markers, Zool. Sci., 2000, vol. 17, pp. 357-364.Google Scholar
  6. 6.
    Zhou, L., Wang, Y., and Gui, J.-F., Genetics Evidence for Gonochoristic Reproduction in Gynogenetic Silver Crucian Carp (Carassius auratus gibelio Bloch) as Revealed by RAPD Assays, J. Mol. Evol. 2000, vol. 51, pp. 498-506.Google Scholar
  7. 7.
    Takai, A. and Ojima, Y., TetraploidyAppeared in the Offspring of Triploid Ginbuna, Carassius auratus langsdorfi (Cyprinidae, Pisces), Proc. Jpn. Acad., 1983, vol. 59 (ser. B), pp. 347-350.Google Scholar
  8. 8.
    Vasil'eva, E.D. and Vasil'ev, V.P., To the Problem of the Origin and Taxonomic Position of Triploid Silver Crucian Carp Carassius auratus (Cyprinidae), Vopr. Ikhtiol., 2000, vol. 40, pp. 581-592.Google Scholar
  9. 9.
    Brykov, Vl.A., Ivanov, O.A., and Ivanova, L.N., Simple Procedures for Isolating Vertebrate Mitochondrial DNA, Ukr. Biokhimich. Zh., 1989, vol. 61, pp. 98-102.Google Scholar
  10. 10.
    McElroy, D., Moran, P., Birmingham, E., and Kornfield, I., REAP: The Restriction Enzyme Package, J. Hered., 1992, vol. 83, pp. 157-158.Google Scholar
  11. 11.
    Nei, M. and Tajima, F., Maximum Likelihood of the Number of Nucleotide Substitutions from Restriction Sites Data, Genetics, 1983, vol. 105, pp. 207-217.Google Scholar
  12. 12.
    Rolf, F.J., NTSYS-ps: Numerical Taxonomy and Multivariate Analysis System, Version 60, NewYork: Exeter, 1990.Google Scholar
  13. 13.
    Zaykin, D.V. and Pudovkin, A.I., Two Programs to Estimate Significance of Chi-Square Values Using Pseudo-Probability Test, J. Hered. 1993, vol. 84, p. 152.Google Scholar
  14. 14.
    Pears, A.G.E., Histochemistry: Theoretical and Applied, London: Churchill, 1960.Google Scholar
  15. 15.
    Brown, W.M., George, M., Jr., and Wilson, A.C., Rapid Evolution of Animal Mitochondrial DNA, Proc. Natl. Acad. Sci. USa, 1979, vol. 76, pp. 1967-1971.Google Scholar
  16. 16.
    Sabaneev, L.P., Ryby Rossii (Fish of Russia), vol. 2, Moscow: Terra, 1993.Google Scholar
  17. 17.
    Avise, J.C. and Vrijenhoek, R.C., Mode of Inheritance and Variation of Mitochondrial DNA in Hybrydigenetic Fishes of the Genus Poeciliopsis, Mol. Biol. Evol., 1987, vol. 4, no. 5, pp. 514-525.Google Scholar
  18. 18.
    Gyllensten, U., The Genetic Structure of Fish: Differences in the Intraspecific Distribution of Biochemical Genetic Variation between Marine, Anadromous, and Freshwater Species, J. Fish. Biol. 1985, vol. 26, pp. 691-699.Google Scholar
  19. 19.
    Ward, R.D., Woodwark, M., and Skibinski, D.O.F., A Comparison of Genetic Diversity Levels in Marine, Freshwater, and Anadromous Fishes, J. Fish. Biol., 1994, vol. 44, pp. 213-232.Google Scholar
  20. 20.
    Lindberg, G.U., Krupnye kolebaniya urovnya okeana v chetvertichnyi period (Large Fluctuations of the Ocean Level in the Quaternary Period), Leningrad: Nauka, 1972.Google Scholar
  21. 21.
    Nevo, E., Beiles, A., and Ben-Shlomo, R., The Evolutionary Significance of Genetic Diversity: Ecological, Demographic and Life History Correlates, Evolutionary Dynamics of Genetic Diversity: Lecture Notes in Biomathematics, Mani, S.S., Ed., 1984, vol. 53, pp. 13-213.Google Scholar
  22. 22.
    Marukami, M., Matsuba, C., and Fujitani, H., The Maternal Origins of the Triploid Ginbuna (Carassius auratus langsdorfi): Phylogenetic Relationships within the C. auratus Taxa by Partial Mitochondrial D-Loop Sequencing, Genes Genet. Syst., 2001, vol. 76, pp. 25-32.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • Vl. A. Brykov
    • 1
  • N. E. Polyakova
    • 1
  • L. A. Skurikhina
    • 1
  • S. M. Dolganov
    • 1
  • M. G. Eliseikina
    • 1
  • M. Yu. Kovalev
    • 1
  1. 1.Institute of Marine BiologyRussian Academy of SciencesVladivostokRussia

Personalised recommendations