Journal of Electroceramics

, Volume 8, Issue 2, pp 107–119 | Cite as

Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials

  • Jungho Ryu
  • Shashank Priya
  • Kenji Uchino
  • Hyoun-Ee Kim
Article

Abstract

In the past few decades, extensive research has been conducted on the magnetoelectric (ME) effect in single phase and composite materials. Dielectric polarization of a material under a magnetic field or an induced magnetization under an electric field requires the simultaneous presence of long-range ordering of magnetic moments and electric dipoles. Single phase materials suffer from the drawback that the ME effect is considerably weak even at low temperatures, limiting their applicability in practical devices. Better alternatives are ME composites that have large magnitudes of the ME voltage coefficient. The composites exploit the product property of the materials. The ME effect can be realized using composites consisting of individual piezomagnetic and piezoelectric phases or individual magnetostrictive and piezoelectric phases. In the past few years, our group has done extensive research on ME materials for magnetic field sensing applications and current measurement probes for high-power electric transmission systems. In this review article, we mainly emphasize our investigations of ME particulate composites and laminate composites and summarize the important results. The data reported in the literature are also compared for clarity. Based on these results, we establish the fact that magnetoelectric laminate composites (MLCs) made from the giant magnetostrictive material, Terfenol-D, and relaxor-based piezocrystals are far superior to the other contenders. The large ME voltage coefficient in MLCs was obtained because of the high piezoelectric voltage coefficient of the piezocrystals and large elastic compliances. In addition, an optimized thickness ratio between the piezoelectric and magnetostrictive phases and the direction of the magnetostriction also influence the magnitude of the ME coefficient.

magnetoelectric piezoelectric magnetostrictive composite Terfenol-D PZT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Curie, J. Physique 3e series, 3, 393 (1894).Google Scholar
  2. 2.
    L.D. Landau and E. Lifshitz, Electrodynamics of Continuous Media (Addison-Wesley: Translation of a Russian edition of 1958), (1960).Google Scholar
  3. 3.
    I.E. Dzyaloshinskii, Sov. Phys.—JETP, 37, 628 (1960).Google Scholar
  4. 4.
    D.N. Astrov, Sov. Phys.—JETP, 11, 708 (1960).Google Scholar
  5. 5.
    G.T. Rado and V.J. Folen, Phys. Rev. Lett., 7, 310 (1961).Google Scholar
  6. 6.
    H. Schmid, Bull. Mater. Sci., 17, 1411 (1994).Google Scholar
  7. 7.
    G. Smolenskii and V.A. Ioffe, Colloque International du Magnetisme, Communication No. 71 (1958).Google Scholar
  8. 8.
    D.N. Astrov, B.I. Al'shin, R.V. Zhorin, and L.A. Drobyshev, Sov. Phys.—JETP, 28, 1123 (1968).Google Scholar
  9. 9.
    T.H. O'Dell, Electronics and Power, 11, 266 (1965).Google Scholar
  10. 10.
    D.N. Astrov, Soviet Phys.—JETP, 13, 729 (1961).Google Scholar
  11. 11.
    R.M. Hornreich, Sol. State Comm., 7, 1081 (1969).Google Scholar
  12. 12.
    R.M. Hornreich, J. Appl. Phys., 41, 950 (1970).Google Scholar
  13. 13.
    E. Fischer, G. Gorodetsky, and R.M. Hornreich, Sol. State Comm., 10, 1127 (1972).Google Scholar
  14. 14.
    V.J. Folen, G.T. Rado, and E.W. Stalder, Phys. Rev. Lett., 6, 607 (1961).Google Scholar
  15. 15.
    S. Foner and M. Hanabusa, J. Appl. Phys., 34, 1246 (1963).Google Scholar
  16. 16.
    L.M. Holmes, L.G. van Uitert, and G.W. Hull, Sol. State Comm., 9, 1373 (1971).Google Scholar
  17. 17.
    R.M. Hornreich, IEEE Trans. Magn., MAG-8, 582 (1972).Google Scholar
  18. 18.
    R.M. Hornreich, in Proc. of Symposium on Magnetoelectric Interaction Phenomena in Crystals, Seattle, May 21–24, 1973, edited by A. Freeman and A. Schmid (Gordon and Breach Science Publishers, New York, 1975), p. 211.Google Scholar
  19. 19.
    R.M. Hornreich and S. Shtrikman, Phys. Rev., 161, 506 (1967).Google Scholar
  20. 20.
    T.J. Martin and J.C. Anderson, Phys. Lett., 11, 109 (1964).Google Scholar
  21. 21.
    T.J. Martin and J.C. Anderson, IEEE Trans. Magn.,MAG-2, 446 (1966).Google Scholar
  22. 22.
    M. Mercier, in Proc. of Symposium on Magnetoelectric Interaction Phenomena in Crystals, Seattle, May 21–24, 1973, edited by A. Freeman and A. Schmid (Gordon and Breach Science Publishers, New York, 1975), p. 99.Google Scholar
  23. 23.
    S. Alexander and S. Shtrikman, Sol. State Comm., 4, 115 (1966).Google Scholar
  24. 24.
    R.M. Hornreich, IEEE Trans. Magn., MAG-8, 582 (1972).Google Scholar
  25. 25.
    R. M. Hornreich and S. Shtrikman, Phys. Rev., 161, 506 (1967).Google Scholar
  26. 26.
    G.A. Smolenskii and I.E. Chupis, Problems in Solid State Physics (Mir Publishers, Moscow, 1984).Google Scholar
  27. 27.
    I.H. Ismailzade, V.I. Nesternko, F.A. Mirishli, and P.G. Rustamov, Phys. Status Solidi, 57, 99 (1980).Google Scholar
  28. 28.
    R.S. Singh, T. Bhimasankaram, G.S. Kumar, and S.V. Suryanarayana, Solid State Comm., 91, 567 (1994).Google Scholar
  29. 29.
    J. Van Suchetelene, Philips Res. Rep., 27, 28 (1972).Google Scholar
  30. 30.
    J. van den Boomgaard and R.A.J. Born, J. Mater. Sci., 13, 1538 (1978).Google Scholar
  31. 31.
    J. van den Boomgaard, A.M.J.G. Van Run, and J. Van Suchetelene, Ferroelectrics, 10, 295 (1976).Google Scholar
  32. 32.
    J. van den Boomgaard, D.R. Terrell, R.A.J. Born, and H.F.J.I. Giller, J. Mater. Sci., 9, 1705 (1974).Google Scholar
  33. 33.
    A.M.J.G. Van Run, D.R. Terrell, and J.H. Scholing, J. Mater. Sci., 9, 1710 (1974).Google Scholar
  34. 34.
    T.G. Lupeiko, I.V. Lisnevskaya, M.D. Chkheidze, and B.I. Zvyagintsev, Inorg. Mater., 31, 1139 (1995).Google Scholar
  35. 35.
    T.G. Lupeiko, I.B. Lopatina, S.S. Lopatin, and I.P. Getman, Neorg. Mater., 27, 2394 (1991).Google Scholar
  36. 36.
    T.G. Lupeiko, I.B. Lopatina, I.V. Kozyrev, and L.A. Derbaremdiker, Neorg. Mater., 28, 632 (1991).Google Scholar
  37. 37.
    Yu. I. Bokhan and V.M. Laletin, Inorg. Mater., 32, 634 (1996).Google Scholar
  38. 38.
    T.G. Lupeiko, S.S. Lopatin, I.V. Lisnevskaya, and B.I. Zvyagintsev, Inorg. Mater. 30, 1353 (1994).Google Scholar
  39. 39.
    R.E. Newnham, Ferroelectrics, 68(1/4) 1 (1986).Google Scholar
  40. 40.
    K. Uchino, Ferroelectric Devices (Marcel Dekker, NewYork, 2000), p. 255.Google Scholar
  41. 41.
    J. Ryu, S. Priya, K. Uchino, H.-E. Kim, and D. Viehland, J. Am. Ceram. Soc. (2002).Google Scholar
  42. 42.
    J. Ryu, Ph.D Thesis, Seoul National University, Seoul, Korea, Aug. 2001.Google Scholar
  43. 43.
    I. Bunget and V. Reatchi, Phys. Stat. Sol., 63, K55 (1981).Google Scholar
  44. 44.
    A.S. Zubkov, Elektrichestvo, 10, 77 (1978).Google Scholar
  45. 45.
    G. Harshe, J.P. Dougherty, and R.E. Newnham, Int. J. Appl. Electromagnetics in Mat., 4, 161 (1993)Google Scholar
  46. 46.
    J. Ryu, A. Vázquez Carazo, K. Uchino, and H.-E. Kim, J. Electroceramics, 7, 17 (2001).Google Scholar
  47. 47.
    C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, and T.R. Shrout, J. Am. Ceram. Soc., 81, 677 (1998).Google Scholar
  48. 48.
    A. Vaázquez Carazo, Ph.D Thesis, Universidad Politècnica do Catalunya, Spain, April 2000.Google Scholar
  49. 49.
    B.D.H. Tellegen, Philips Res. Rep., 3, 81 (1948).Google Scholar
  50. 50.
    H.W. Katz, Solid State Magnetic and Dielectric Devices (John Wiley and Sons, New York, 1959), p. 172.Google Scholar
  51. 51.
    V.E. Wood and A.E. Austin, in Proc. of Symposium on Magnetoelectric Interaction Phenomena in Crystals, Seattle, May 21–24, 1973, edited by A. Freeman and A. Schmid (Gordon and Breach Science Publishers, New York, 1975), p. 181.Google Scholar
  52. 52.
    J. Ryu, A. Vaázquez Carazo, K. Uchino, and H.-E. Kim, Jpn. J. Appl. Phys., 40, 4948 (2001).Google Scholar
  53. 53.
    J. Ryu, S. Priya, A. Vaázquez Carazo, K. Uchino, and H.-E. Kim, J. Am. Ceram. Soc., 84, 2905 (2001).Google Scholar
  54. 54.
    A.V. Virkar, J.L. Huang, and R.A. Cutler, J. Am. Ceram. Soc., 70, 164 (1987).Google Scholar
  55. 55.
    G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic Press, San Diego, CA, 2000), p. 127.Google Scholar
  56. 56.
    G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic Press, San Diego, CA, 2000), p. 175.Google Scholar
  57. 57.
    J. Kuwata, K. Uchino, and S. Nomura, Ferroelectrics, 37, 579 (1981).Google Scholar
  58. 58.
    J. Kuwata, K. Uchino, and S. Nomura, Jpn. J. Appl. Phys., 21, 1298 (1982).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jungho Ryu
    • 1
  • Shashank Priya
    • 1
  • Kenji Uchino
    • 1
  • Hyoun-Ee Kim
    • 2
  1. 1.International Center for Actuators and Transducers, Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA
  2. 2.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations