Antonie van Leeuwenhoek

, Volume 81, Issue 1–4, pp 373–383 | Cite as

Microbe–plant interactions: principles and mechanisms

  • Ben J.J. Lugtenberg
  • Thomas F.C. Chin-A-Woeng
  • Guido V. Bloemberg
Article

Abstract

The present status of research on the molecular basis of microbe–plant interactions is discussed. Principles and mechanisms which play a role in the interactions of microbial pathogens, biofertilizers, phytostimulators, rhizoremediators and biocontrol agents with the plants are treated. Special emphasis is given to colonization, phase variation, two-component systems, quorum sensing, complex regulation of the syntheses of extracellular enzymes and secondary metabolites, Type 4 pili and Type III and Type IV secretion systems.

anti-fungal metabolites biofertilizers biopesticides colonization genomics induced systemic resistance pathogens phase variation phytostimulators quorum sensing recognition regulation rhizoremediators two-component systems Type 4 pili Type III secretion systems Type IV secretion systems 

References

  1. Aarons S, Abbas A, Adams C, Fenton A & O'Gara F (2000) A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J. Bacteriol. 182: 3913–3919.CrossRefPubMedGoogle Scholar
  2. Alabouvette C (1986) Fusarium wilt suppresive soils from the chateaurenard region: review of a 10 year study. Agronomie 6: 273–284.Google Scholar
  3. Allaway D, Schofield NA, Leonard ME, Gilardoni L, Finan TM & Poole PS (2001) Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ. Microbiol. 3: 397–406.CrossRefPubMedGoogle Scholar
  4. Bakker PAHM, van Peer R & Schippers B (1990) In: Hornby D (Ed) Biological Control of Soil-Borne Plant Pathogens (pp 131–142). CAB International, Wallingford.Google Scholar
  5. Bangera MG & Thomashow LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol. Plant-Microbe Interact. 9: 83–90.PubMedGoogle Scholar
  6. Bloemberg GV, O'Toole GA, Lugtenberg BJJ & Kolter R (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63: 4543–4551.PubMedGoogle Scholar
  7. Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N & Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescensWCS365 populations expressing three different auto-fluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol. Plant-Microbe Interact. 13: 1170–1176.PubMedGoogle Scholar
  8. Bloemberg GV & Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Op. Plant Biol. 4: 343–350.CrossRefGoogle Scholar
  9. Blumer C, Heeb S, Pessi G & Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc. Natl. Acad. Sci. 96: 14073–14078.CrossRefPubMedGoogle Scholar
  10. Bonas U, Ballvora A, Büttner D, Hahn K, Lahaye T, Marois E, Nennstiel D, Noel L, Pierre M, Szurek B, van den Ackerveken G & Rossier O (2000) Hrp type III secretion-mediated signaling between Xanthomonas and the plant. In: Wit de PJGM, Bisseling T, Stiekema WJ (Eds) Biology of Plant-Microbe Interactions (pp 23–28). International Society for Molecular Plant-Microbe Interactions, St. Paul, MN, USA.Google Scholar
  11. Bonfante P & Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist 130: 3–21.CrossRefGoogle Scholar
  12. Camacho MM (2000) Molecular characterization of type 4 pili, NDHI and PyrR in rhizosphere colonization of Pseudomonas fluorescens WCS365. Phd Thesis, Leiden University.Google Scholar
  13. Chancey ST, Wood DW & Pierson III LS (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl. Environ. Microbiol. 65: 2294–2299.PubMedGoogle Scholar
  14. Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy H, de Bruijn FJ, Thomas-Oates JE & Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant-Microbe Interact. 11: 1069–1077.Google Scholar
  15. Chin-A-Woeng TFC (2000) Molecular basis of biocontrol of tomato foot and root rot by Pseudomonas chlororaphis strain PCL1391. Phd Thesis, Leiden University.Google Scholar
  16. Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC & Lugtenberg BJJ (2000) Root colonization by Phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact. 13: 1340–1345.PubMedGoogle Scholar
  17. Chin-A-Woeng TFC, van den Broek D, de Voer G, van der Drift KMGM, Tuinman S, Thomas-Oates JE, Lugtenberg BJJ & Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol. Plant-Microbe Interact. 14: 969–979.PubMedGoogle Scholar
  18. Cornelis GR & Wolf-Watz H (1997) The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23: 861–867.CrossRefPubMedGoogle Scholar
  19. Darzins A & Russell MA (1997) Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system-a review. Gene 192: 109–115.CrossRefPubMedGoogle Scholar
  20. Dekkers LC, Phoelich CC, van der Fits L & Lugtenberg BJJ (1998) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc. Natl. Acad. Sci. 95: 7051–7056.CrossRefPubMedGoogle Scholar
  21. Dekkers, LC, Mulders IHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM & Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicislycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. Bacteria. Mol. Plant-Microbe Interact. 13: 1177–1183.PubMedGoogle Scholar
  22. Delaney I, Sheehan MM, Fenton A, Bardin S, Aarons S & O'Gara F (2000) Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiol. 146: 537–546.Google Scholar
  23. Delaney SM, Mavrodi DV, Bonsall RF & Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine com381 pounds in Pseudomonas aureofaciens 30-84. J. Bacteriol 183: 318–327.CrossRefPubMedGoogle Scholar
  24. Déziel E, Comeau Y & Villemur R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol. 183: 1195–1204.CrossRefPubMedGoogle Scholar
  25. Dörr J, Hurek T & Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol. 30: 7–17.CrossRefPubMedGoogle Scholar
  26. Duffy BK & Défago (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65: 2429–2438.PubMedGoogle Scholar
  27. Espinosa-Urgel M, Salido A & Ramos J-L (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol. 182: 2363–2369.CrossRefPubMedGoogle Scholar
  28. Felix G, Duran JD, Volko S & Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal 18: 265–276.CrossRefPubMedGoogle Scholar
  29. Flores M, Mavingui P, Perret X, Broughton WJ, Romero D, Hernández G, Dávila G & Palacios R (2000) Prediction, identification, and artificial selection of DNA rearrangements in Rhizobium: toward a natural genomic design. Proc. Natl. Acad. Sci. 97: 9138–9143.CrossRefPubMedGoogle Scholar
  30. Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GSAB & Grierson D (1999) Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nature Biotechnol. 17: 1017–1020.CrossRefGoogle Scholar
  31. Galán JE & Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322–1328.CrossRefPubMedGoogle Scholar
  32. Givskov M, Nys de R, Manefield M, Gram L, Masimillen R, Eberl L, Molin S, Steinberg PD & Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178: 6618–6622.PubMedGoogle Scholar
  33. Goosen-de Roo L, de Maagd RA & Lugtenberg BJJ (1991) Antigenic changes in lipolysaccharide I of Rhizobium leguminosarum bv. viciae in root nodules of Vicia sativa subsp. nigra occur during release from injection threads. J. Bacteriol. 173: 3177–3183.PubMedGoogle Scholar
  34. Haas D, Blumer C & Keel C (2000) Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr. Opin. Biotech. 11: 290–297.CrossRefPubMedGoogle Scholar
  35. Harrison MJ, Burleigh SH, Liu H & van Buuren ML (1996) Vesicular-Arbuscular mycorrhizae: molecular approaches to investigate phosphate nutrition in the symbiosis. In: Stacey G, Mullin B & Gresshoff PM (Eds) Biology of Plant-Microbe Interactions (pp 515–520) International Society for Molecular Plant-Microbe Interactions, St. Paul, MN, USA.Google Scholar
  36. He SY (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol. 36: 363–392.CrossRefPubMedGoogle Scholar
  37. Holden MTG, Chhabra SR, Nys de R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GPC, Stewart GSAB, Bycroft BW, Kjelleberg S & Williams P (1999) Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol. Microbiol. 33: 1254–1266.CrossRefPubMedGoogle Scholar
  38. Hollingsworth RI & Carlson RW (1989) 27-Hydroxyoctacosanoic acid is a major structural fatty acyl component of the lipopolysaccharide of Rhizobium trifolii ANU 843. J. Biol. Chem. 264: 9300–9303.PubMedGoogle Scholar
  39. Hutchinson ML, Gross D (1997) Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channelforming activities of syringopeptin and syringomycin. Mol. Plant-Microbe Interact. 10: 347–354.Google Scholar
  40. Keel C, Wirthner PH, Oberhansli TH, Voisard C, Burger U, Haas D & Defago G (1990) Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9: 327–342.Google Scholar
  41. Keen NT (1996) Bacterial determinants of pathogenicity and avirulence - an overview. In: Stacey G, Mullin B & Gresshoff PM (Eds) Biology of Plant-Microbe Interactions (pp 145–152) International Society for Molecular Plant-Microbe Interactions, St. Paul, MN, USA.Google Scholar
  42. Kirner S, Hammer PE Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pée K-H & Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. 180: 1939–1943.PubMedGoogle Scholar
  43. Kjelleberg S, Steinberg P, Givskov M, Gram L, Manefield M & Nys de R (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol. 13: 85–93.Google Scholar
  44. Kuiper I (2001) Molecular characterization of root colonizing Pseudomonas strains for rhizoremediation. PhD Thesis, Leiden University.Google Scholar
  45. Kuiper I, Bloemberg GV & Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant-Microbe Interact. 14: 1197–1205.PubMedGoogle Scholar
  46. Lagopodi AL, Ram AFJ, Lamers GEM, Punt JP, Van den Hondel CAMJJ, Lugtenberg BJJ and Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum F. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol. Plant-Microbe Interact. 15: 172–179.PubMedGoogle Scholar
  47. Lam E, Kato N & Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411: 848–853.CrossRefPubMedGoogle Scholar
  48. Lee S-W & Cooksey DA (2000) Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl. Environ. Microbiol. 66: 2764–2772.CrossRefPubMedGoogle Scholar
  49. Lindgren PB (1997) The role of hrp genes during plant-bacterial interactions. Annu. Rev. Phytopathol. 35: 129–152.CrossRefPubMedGoogle Scholar
  50. Lindow SE (1995) Control of epiphytic ice nucleation-active bacteria for management of plant frost injury. In: Lee RE, Warren GJ & Gusta LV (Eds) Biological Ice Nucleation and its Applications (pp 239–256). American Phytopathological Society Press, St. Paul, MN, USA.Google Scholar
  51. Liyanage H, Palmer DA, Ulrich M & Bender CL (1995) Characterization and transcriptional analysis of the gene cluster for coronafacic acid, the polyketide component of the phytotoxin coronatine. Appl. Environ. Microbiol. 61: 3843–3848.PubMedGoogle Scholar
  52. Lugtenberg BJJ (1998) Outer membrane proteins. In: Spaink HP, Kondorosi A & Hooykaas PJJ (Eds) The Rhizobiaceae (pp 45–53). Kluwer Academic Publishers, Dordrecht.Google Scholar
  53. Lugtenberg BJJ & Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol. 1: 9–13.CrossRefPubMedGoogle Scholar
  54. Lugtenberg BJJ, Dekkers L & Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39: 461–490.CrossRefPubMedGoogle Scholar
  55. M'piga PM, Bélanger RR, Paulitz TC & Benhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicislycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiol. Mol. Plant Pathol. 50: 301–320.CrossRefGoogle Scholar
  56. Macnab RM (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J. Bacteriol. 181: 7149–7153.PubMedGoogle Scholar
  57. Mahajan MS, Tan MW, Rahme LG & Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa Caenorhabditis elegans pathogenesis model. Cell 96: 47–56.CrossRefGoogle Scholar
  58. Manefield M, Nys de R, Jumar N, Read R, Givskov M, Steinberg P & Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145: 283–291.PubMedCrossRefGoogle Scholar
  59. Marie C, Broughton WJ & Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr. Op. Plant Biol. 4: 336–342.CrossRefGoogle Scholar
  60. Minder AC, Rudder KEE, Narberhaus F, Fischer H-M, Hennecke H & Geiger O (2001) Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol. Microbiol. 39: 1186–1198.CrossRefPubMedGoogle Scholar
  61. Natera SHA, Guerreiro N & Djordjevic MA (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol. Plant-Microbe Interact. 13: 995–1009.PubMedGoogle Scholar
  62. Nielsen TH, Thrane C, Christophersen C, Anthoni U & Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 89: 992–1001.CrossRefPubMedGoogle Scholar
  63. Nowak-Thompson, B, Chaney N, Wing JS, Gould SJ & Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181: 2166–2174.PubMedGoogle Scholar
  64. O'Toole GA & Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295–304.CrossRefPubMedGoogle Scholar
  65. Okinaka Y, Yang C-H, Ruiz MG & Keen NT (2001) Microarray profiling of gene expression in Erwinia chrysanthemi 3937 during plant infection. Abstract of 10th International Congr. on Mol. Plant-Microbe Interact. (Abstract #263).Google Scholar
  66. Okon Y, Bloemberg GV & Lugtenberg BJJ (1998) Biotechnology of biofertilization and phytostimulation. In: Altman A (Ed) Agricultural Biotechnology (pp 327–349). Marcel Dekker Inc., New York.Google Scholar
  67. Ordentlich A, Elad Y & Chet I (1987) Rhizosphere colonization by Serratia marcescens for the control of Sclerotium RolfsII. Soil. Bio. Biochem. 19: 747–751.CrossRefGoogle Scholar
  68. Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP & Iglewski BH (1999) Quinolone signaling in the cell-tocell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 96: 11229–11234.CrossRefPubMedGoogle Scholar
  69. Pierson III LS, Keppenne VD & Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J. Bacteriol. 176: 3966–3974.PubMedGoogle Scholar
  70. Pierson LS, Gaffney T, Lam S & Gong F (1995) Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens. FEMS Microbiol. Lett. 134: 299–307.PubMedGoogle Scholar
  71. Plessl J, Dorr J, Hurek T & Reinhold-Hurek B (2000) Interactions of Azoarcus spp. with rice: role of type 4 pili. Fourth European Nitrogen Fixation Conference. Sevilla, Spain. Abstract book, p. 31.Google Scholar
  72. Poplawski AR, Chun W, Slater H, Daniels MJ & Dow M (1998) Synthesis of extracellular polysaccharide, extracellular enzymes and xanthomonadin in Xanthomonas campestris: Evidence for the involvement of two intercellular regulatory signals. Mol. Plant-Microbe Interact. 11: 68–70.Google Scholar
  73. Preston GM, Bertrand N, Jackson RW & Rainey PB (2001) Type III secretion in Pseudomonas fluorescens SBW25. Abstract of 10th International Congr. on Mol. Plant-Microbe Interact. (Abstract #671).Google Scholar
  74. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG & Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899–1902.PubMedGoogle Scholar
  75. Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 3: 243–257.CrossRefGoogle Scholar
  76. Reinhold-Hurek B & Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends in Microbiol. 6: 139–144.CrossRefGoogle Scholar
  77. Romantschuk M & Bamford DH (1986) The causal agent of halo blight in bean, Pseudomonas syringae pv. phaseolicola, attaches to stomata via its pili. Microb. Pathog. 1: 139–148.CrossRefPubMedGoogle Scholar
  78. Ronson C, Sullivan J, Trzebiatowski J, Gouzy J & de Bruijn F (2001) Comparative genomics of the symbiosis island of Mesorhizobium loti. In: Abstract of 10th International Congr. on Mol. Plant-Microbe Interact. (Abstract #66).Google Scholar
  79. Ruiz-Lozano JM & Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microb. Ecol. 39: 137–144.CrossRefPubMedGoogle Scholar
  80. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D & Keel C (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol. 182: 1215–1225.CrossRefPubMedGoogle Scholar
  81. Schripsema J, de Rudder KEE, van Vliet TB, Lankhorst PP, de Vroom E, Kijne JW & van Brussel AAN (1996) Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-l-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol. 178: 366–371.PubMedGoogle Scholar
  82. Simon HM, Smith KP, Dodsworth JA, Guenthner B, Handelsman J & Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl. Environ. Microbiol. 67: 514–520.CrossRefPubMedGoogle Scholar
  83. Sivan A & Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79: 198–203.Google Scholar
  84. Smith KP, Handelsman J & Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc. Natl. Acad. Sci. 96: 4786–4790.CrossRefPubMedGoogle Scholar
  85. Smith LM, Tola E, de Boer P & O'Gara F (1999) Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens F113. Environ. Microbiol. 6: 495–502.CrossRefGoogle Scholar
  86. Smith SE & Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 221–244.CrossRefGoogle Scholar
  87. Sohlenkamp C, Rudder KEE, Röhrs, V, López Lara IM & Geiger O (2000) Cloning and characterization of the gene for phosphatidylcholine synthase. J. Biol. Chem. 275: 18919–18925.CrossRefPubMedGoogle Scholar
  88. Spaink HP, Kondorosi A & Hooykaas PJJ (Eds) (1998) In: The Rhizobiaceae: Molecular Biology of Model Plant-Associate Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  89. Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Ann. Rev. Microbiol. 54: 257–288.CrossRefGoogle Scholar
  90. Spaink HP, Bladergroen MR, Badelt K, Stronk OP & Schlaman WRM (2001) Avirulence factors from symbiotic bacteria. In: Abstract of 10th International Congr. on Mol. Plant-Microbe Interact. (Abstract #12).Google Scholar
  91. Spellig T, Bottin A & Kahmann R (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol. Gen. Genet. 252: 503–509.PubMedGoogle Scholar
  92. Stanghellini ME & Miller RM (1997) Biosurfactants: Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease 81: 4–12.Google Scholar
  93. Steenhoudt O & Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24: 487–506.CrossRefPubMedGoogle Scholar
  94. Stohl EH, Stabb EV & Handelsman J (1996) Zwittermicin A and Biological control of Oomycete pathogens. In: Stacey G, Mullin B & Gresshoff PM (Eds) Biology of Plant-Microbe Interactions (pp 475–486). International Society forMolecular Plant-Microbe Interactions, St. Paul, MN, USA.Google Scholar
  95. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ & Lagrou M et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964.CrossRefPubMedGoogle Scholar
  96. Teplitski M, Robinson JB & Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact. 13: 637–648.PubMedGoogle Scholar
  97. Thomashow LS & Weller DM (1988) Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritice. J. Bacteriol. 170: 3499–3508.PubMedGoogle Scholar
  98. Thrane C, Nielsen TH, Nielsen MN, Sørensen J & Olsson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR 54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol. Ecol. 33: 139–146.CrossRefPubMedGoogle Scholar
  99. Tombolini R, van der Gaag DJ, Gerhardson B & Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on Barley seeds visualized by using green fluorescent protein. Appl. Environ. Microbiol. 65: 3674–3680.PubMedGoogle Scholar
  100. Vande Broek A, Lambrecht M, Eggermont K & Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J. Bacteriol. 181: 1338–1342.PubMedGoogle Scholar
  101. Van Loon LC, Bakker PAHM & Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453–483.CrossRefPubMedGoogle Scholar
  102. Van Peer R, Niemann GJ & Schippers B (1999) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728–734.Google Scholar
  103. Van Wees SCM, Swart de EAM, van Pelt JA, van Loon LC & Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonatedependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 97: 8711–8716.CrossRefPubMedGoogle Scholar
  104. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuïnk TJG & Hooykaas PJJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979–982.CrossRefPubMedGoogle Scholar
  105. Viprey V, Del Greco A, Golinowski W, Broughton WJ & Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28: 1381–1389.CrossRefPubMedGoogle Scholar
  106. Wang C, Knill E, Glick BR & Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol. 46: 898–907.CrossRefPubMedGoogle Scholar
  107. Whistler CA, Stockwell VO & Loper JE (2000) Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 66: 2718–2725.CrossRefPubMedGoogle Scholar
  108. Whiteley M, Lee KM & Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 96: 13904–13909.CrossRefPubMedGoogle Scholar
  109. Wood DW, Chen L, Chen Y, Monks DE, Raymond C, Bovee D, Clendenning J, Kutyavin T, Zhou Y, Setubal JC, Okura VK, Kitajima JPW, Dolan M, Tomb JF, Zhang S, Kaul R, Olson MV, Gordon MP & Nester EW (2001) Sequencing and analysis of the Agrobacterium tumefaciensgenome. Abstract of 10th International Congr. on Mol. Plant-Microbe Interact. (Abstract #284).Google Scholar
  110. Young GM, Schmiel DH & Miller VL (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci 96: 6456–6461.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ben J.J. Lugtenberg
    • 1
  • Thomas F.C. Chin-A-Woeng
    • 1
  • Guido V. Bloemberg
    • 1
  1. 1.Institute of Molecular Plant Sciences, Clusius LaboratoryLeiden UniversityLeidenThe Netherlands

Personalised recommendations