Antonie van Leeuwenhoek

, Volume 81, Issue 1–4, pp 143–153 | Cite as

Does experimental evolution reflect patterns in natural populations? E. coli strains from long-term studies compared with wild isolates

  • V. Souza
  • M. Travisano
  • P.E. Turner
  • L.E. Eguiarte
Article

Abstract

Our results show that experimental evolution mimics evolution in nature. In particular, only 1000 generations of periodic recombination with immigrant genotypes is enough for linkage disequilibrium values in experimental populations to change from a maximum linkage value to a value similar to the one observed in wild strains of E. coli. Our analysis suggests an analogy between the recombination experiment and the evolutionary history of E. coli; the E. coligenome is a patchwork of genes laterally inserted in a common backbone, and the experimental E. coli chromosome is a patchwork where some sites are highly prone to recombination and others are very clonal. In addition, we propose a population model for wild E. coli where gene flow (recombination and migration) are an important source of genetic variation, and where certain hosts act as selective sieves; i.e., the host digestive system allows only certain strains to adhere and prosper as resident strains generating a particular microbiota in each host. Therefore we suggest that the strains from a wide range of wild hosts from different regions of the world may present an ecotypic structure where adaptation to the host may play an important role in the population structure.

Escherichia coli experimental evolution genetic structure population genetics recombination wild isolates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown AHD, Feldman MW & Nevo E (1980) Multilocus structure of natural populations of Hordeum spontaneum. Genetics, 96: 523–536.PubMedGoogle Scholar
  2. Caugant DA, Levin BR & Selander RK (1981) Genetic diversity and temporal variation in the E.coli population of a human host. Genetics 98: 467–490.PubMedGoogle Scholar
  3. Elena S & Lenski RE (1997) Long-term experimental evolution in Escherichia coli. VII. mechanisms maintaining genetic variability within populations. Evolution 51: 1058–1067.CrossRefGoogle Scholar
  4. Guttman DS & Dykhuizen DE (1994) Clonal divergence in Escherichia coli as result of recombination, not mutation. Science 266: 1380–1383.PubMedGoogle Scholar
  5. Haubold B & Rainey PB (1996) Genetic and ecotypic structure of a fluorescent Pseudomonas population. Mol. Ecol. 5: 747–761.Google Scholar
  6. Hedrick PW & Thomson G (1985) A two-locus neutrality test: applications to human, E. coli and lodgepole pine. Genetics 112: 135–156Google Scholar
  7. Herbert PDN & Beaton MJ (1993) Methodologies for Allozyme Analysis Using Cellulose Acetate Electrophoresis. Helena Laboratories, USA.Google Scholar
  8. Koshi LB, Morton RA & Golding GB (2001) Codon bias and base composition are poor indicators of horizontally transfered genes. Mol. Biol. Evol. 18: 404–412.Google Scholar
  9. Lenski RE & Travisano M (1994). Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91: 6808–6814.PubMedCrossRefGoogle Scholar
  10. Lenski RE, Rose MR, Simpson SC & Tadler SC (1991). Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138: 1315–1341.CrossRefGoogle Scholar
  11. Maynard Smith J (1991) The population genetics of bacteria. Proc. R. Soc. London 245: 37–41.Google Scholar
  12. Maynard Smith J & Smith NH (1998) Detecting recombination from gene trees. Mol. Biol. Evol. 15: 590–599.PubMedGoogle Scholar
  13. Maynard Smith J, Smith NH & O'Rourke M & Spratt BG (1993) How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90: 4384–4388.CrossRefGoogle Scholar
  14. Milkman R (1997) Recombination and population structure in Escherichia coli. Genetics 146: 745–750.PubMedGoogle Scholar
  15. Milkman R & McKane-Bridges M (1990) Molecular Evolution of the Escherichia coli chromosome. III. Clonal Frames. Genetics 126: 505–517.PubMedGoogle Scholar
  16. Milkman R & Stolzfus A (1988) Molecular evolution of Escherichia coli chromosome. II. Clonal segments. Genetics 120: 359–366.PubMedGoogle Scholar
  17. Ochman H & Selander RK (1984) Evidence for clonal population structure in Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 198–201.PubMedCrossRefGoogle Scholar
  18. Ochman H & Wilson AC (1987) Evolutionary History of Enteric Bacteria. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M & Umbarger MHE (Eds) Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology (pp 1625–1648). American Society of Microbiology, Washington, DC.Google Scholar
  19. O'Rourke M & Stevens E (1993) Genetic structure of Neisseria gonorrhoeae populations: a non clonal pathogen. J. Gen. Microbiol. 139: 2603–2611.PubMedGoogle Scholar
  20. Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski RE & Blot M (1999). Genomic evolution during a 10,000-generation experiment with bacteria. Proc. Natl. Acad. Sci. USA 96: 3807–3812PubMedCrossRefGoogle Scholar
  21. Perna NT, Plunkett III G, Burland V, Mau B, Glasner JD, Rose JD, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dinalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch R & Blattner FR (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 409: 529–533.PubMedCrossRefGoogle Scholar
  22. Prosser CL (1973) Comparative Animal Physiology. 3rd Edn. Saunders, Philadelphia, PA.Google Scholar
  23. Pupo GM & Richardson BJ (1995) Biochemical genetics of a natural population of Escherichia coli: seasonal changes in alleles and haplotypes. Microbiology 141: 1037–1044.PubMedCrossRefGoogle Scholar
  24. Ridley M & B Labedan (1996) Escherichia coli gene products: physiological functions and common ancestries. In: Neidhardt FC, Curtis R, Ingraham J, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Magasanik, B, Riley M, Schaechter M & Umbarger, MHE (Eds) Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, 2nd Edn (pp 2108–2140). American Society of Microbiology, Washington, DC.Google Scholar
  25. Rozen DE & Lenski RE (2000). Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am. Nat. 155: 24–35.PubMedCrossRefGoogle Scholar
  26. Selander RK, Caugant DA Ochman H, Muser JM & Whittam TS (1986) Methods of multilocus electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51: 873–884.PubMedGoogle Scholar
  27. Selander RK, Caugant DA & Whittam TS (1987) Genetic structure and variation in natural populations of Escherichia coli. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M & Umbarger MHE (Eds) Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology (pp 1625–1648). American Society of Microbiology, Washington, DC.Google Scholar
  28. Souza V, Nguyen TT, Hudson RR, Piñero D & Lenski RE (1992) Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for localized sex? Proc. Natl. Acad. Sci. USA 89: 8389–8393.PubMedCrossRefGoogle Scholar
  29. Souza V, Eguiarte L, Avila G & Gallardo C (1994) Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultivated been plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos, Mexico. Appl. Environ. Microbiol. 60, 1260–1268.PubMedGoogle Scholar
  30. Souza V, Turner PE, & Lenski RE (1997). Long-term experimental evolution in Escherichia coli. V. effects of recombination with immigrant genotypes on the rate of bacterial evolution. J. Evol. Biol. 10: 743–769.CrossRefGoogle Scholar
  31. Souza V, Rocha M, Valera A & Eguiarte LE (1999) Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl. Environ. Microbiol. 65: 3373–3385.PubMedGoogle Scholar
  32. Swofford D (2001) Version 4.0 beta version, Laboratory of Molecular Systematics. Smithsonian Institution, Beta Documentation http://www.lms.si.edu/PAUP.Google Scholar
  33. Travisano M & Rainey P (2000) studies of adaptative radiation using model microbial systems. Am. Nat. 156: 35–44.CrossRefGoogle Scholar
  34. Turner PE (1995) Associations between bacteria and conjugative plasmids: model systems for testing evolutionary theory. Dissertation. Michigan State University, East Lansing, MI, USA.Google Scholar
  35. Turner PE, Souza V & Lenski RE (1996) Tests of ecological mechanisms promoting the stable coexistence of two bacterial genotypes. Ecology 77: 2119–2129.CrossRefGoogle Scholar
  36. Whittam TS (1989). Clonal dynamics of Escherichia coli in its natural habitat. Antonie van Leeuwenhoek. 55: 23–32.PubMedCrossRefGoogle Scholar
  37. Whittam TS (1996) Genetic variation and evolutionary processes in natural population of Escherichia coli. In: Neidhardt FC, Curtis R, Ingraham J, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Magasanik, B, Riley M, Schaechter M & Umbarger, MHE (Eds) Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, 2nd edn. (pp 2708–2720). American Society of Microbiology, Washington, DC.Google Scholar
  38. Whittam TS & Ake SE (1993) Genetic Polymorphisms and recombination in natural populations of Escherichia coli. In: Takahata N & Clark AG (Eds) Mechanisms of Molecular Evolution (pp 223–245). Japan Scientific Society Press, Sinauer Associates, Inc., Tokyo.Google Scholar
  39. Whittam TS, Wolfe ML, Wachsmuth IK, Ørskov F, Ørskov I & Wilson RA (1993) Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect. Immun. 61: 1619–1629.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • V. Souza
    • 1
  • M. Travisano
    • 1
  • P.E. Turner
    • 2
  • L.E. Eguiarte
    • 1
  1. 1.Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxico D.FMéxico
  2. 2.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA

Personalised recommendations