Ecotoxicology

, Volume 11, Issue 5, pp 299–310

Mixture Toxicity of Priority Pollutants at No Observed Effect Concentrations (NOECs)

  • Helge Walter
  • Federica Consolaro
  • Paola Gramatica
  • Martin Scholze
  • Rolf Altenburger
Article

Abstract

Environmental exposure situations are often characterised by a multitude of heterogeneous chemicals with ambiguous or unknown modes of action present at low concentrations. While multiple exposure is widely acknowledged, arguments are raised that adverse combined effects might not be evoked by mixtures of substances with dissimilar modes of action and being present at only low concentrations. In this study the combined effect of a multiple mixture composed of structurally dissimilar priority pollutants with mostly unknown modes of action has been investigated using an algal biotest. The concentrations of the components in the mixture equalled statistically estimated, individual no observed effect concentrations (NOECs). The observed mixture toxicity was not only clearly higher than expected for any single substance alone, but also well predictable using the concept of independent action.

Concentraton addition Independent action Mixture toxicity Scenedesmus vacuolatus Priority pollutants Council Directive 76/464/EEC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenburger, R. and Backhaus, T. (2000). Der Faktor Zeit bei der Beurteilung von biologischen Wirkungen. In W. Mücke and M. Limk (eds.) Biotests in der Praxis . München: Institut für Toxikologie und Umwelthygiene, Technische Universität München. pp. 61–34.Google Scholar
  2. Altenburger, R., Bödeker, W., Faust, M. and Grimme, L.H. (1990). Evaluation of the isobologram method for the assessment of mixtures of chemicals. Combination effect studies with pesticides in algal biotests. Ecotoxicol. Environ. Safety 20 , 98–114.Google Scholar
  3. Altenburger, R., Bödeker, W., Faust, M. and Grimme, L.H. (1993). Aquatic Toxicology, Analysis of combination effects. In M. Corn (ed.). Handbook of Hazardous Materials . New York: Academic Press. pp. 15–23.Google Scholar
  4. Altenburger, R., Bödeker, W., Faust, M. and Grimme, L.H. (1996). Regulations for combined effects of pollutants: Consequences from risk assessment in aquatic toxicology. Food Chem. Toxicol. 34 , 1155–7.Google Scholar
  5. Altenburger, R., Backhaus, T., Boedeker, W., Faust, M., Scholze, M. and Grimme, L.H. (2000). Predictability of the toxicity of multiple chemical mixtures to Vibrio fisheri : Mixtures composed of similarly acting chemicals. Environ. Toxicol. Chem. 19 , 2341–7.Google Scholar
  6. Backhaus, T., Altenburger, R., Boedeker, W., Faust, M., Scholze, M. and Grimme, L.H. (2000). Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri . Environ. Toxicol. Chem. 19 , 2348–56.Google Scholar
  7. Balaban, A.T. (1997). From Chemical Topology to Three-dimensional Geometry . New York: Plenum Press.Google Scholar
  8. Berenbaum, M.C. (1985). The expected effect of a combination of agents: the general solution. J. Theoret. Biol. 114 , 413–31.Google Scholar
  9. Broderius, S.J., Kahl, M.D. and Hoglund, M.D. (1995). Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environ. Toxicol. Chem. 14 , 1591–605.Google Scholar
  10. Cassee, F.R., Groten, J.P., van Bladeren, P.J. and Feron, V.J. (1998). Toxicological evaluation and risk assessment of chemical mixtures. Critical Rev. Toxicol. 28 , 73–101.Google Scholar
  11. Chapman, P.M., Cadwell, R.S. and Chapman, P.F. (1996). A warning: NOECs are inappropriate for regulatory use. Environ. Toxicol. Chem. 15 , 77–9.Google Scholar
  12. Cole, D.R., Plapp, Jr. F, W. (1974). Inhibition of growth and photosynthesis in Chlorella pyrenoidosa by a polychlorinated biphenyl and several insecticides. Environ. Entomol. 3 (2), 217–20.Google Scholar
  13. CSTE/EEC, (1994). Scientific Advisory Committee Activity Report published by the Commission of the European Communities, Office for Official Publication of the E.C., Luxembourg: EUR (1992–1993).Google Scholar
  14. Dunnett, C.W. (1964). New tables for multiple comparisons with a control. Biometrics 20 , 482–91.Google Scholar
  15. European Inland Fisheries Advisory Commission (EIFAC). (1987). Water quality criteria for European freshwater fish Revised report on combined effects on freshwater fish and other aquatic life of mixtures of toxicants in water. EIFAC Technical Paper No. 37, Rev 1.Google Scholar
  16. Fargasova, A. (1997). Comparative study of ecotoxicological effect of triorganotin compounds on various biological subjects. Ecotoxicol. Environ. Safety 36 , 38–42.Google Scholar
  17. Fargasova, A. (1998). Comparison of effects of tibutyl-, triphenyl-, and tribenzyltin compounds on freshwater benthos and algae Scenedesmus quadricauda . Bull. Environ. Contam. Toxicol. 60 , 9–15.Google Scholar
  18. Faust, M., Altenburger, R., Backhaus, T., Boedeker, W., Scholze, M. and Grimme, L.H. (2000). Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J. Environ. Quality 29 , 1063–8.Google Scholar
  19. Feron, V.J., Cassee, F.R. and Groten, J.P. (1998). Toxicology of chemical mixtures: international perspective. Environ. Health Persp. 106 , 1281–9.Google Scholar
  20. Geyer, H., Scheunert, I. and Korte, F. (1985). The effects of organic environmental chemicals on the growth of the alga Scenedesmus subspicatus : a contribution to environmental biology. Chemosphere 14 , 1355–69.Google Scholar
  21. Gramatica, P., Vighi, M., Consolaro, F., Todeschini, R., Finizio, A. and Faust, M. (2001). QSAR approach for the selection of congeneric compounds with a similar toxicological mode of action. Chemosphere 42 , 873–83.Google Scholar
  22. Greco, W.R., Bravo, G. and Parsons, J.C. (1995). The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev. 47 , 331–85.Google Scholar
  23. Grimme, L.H., Altenburger, R., Bödeker, W. and Faust, M. (1994). Kombinationswirkungen von Schadstoffen—Toxizität binärer Kombinationen von Pestiziden und Tensiden im Algenbiotest. Forschungsbericht 102 07 205. Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit.Google Scholar
  24. Grimme, L.H., Altenburger, R., Backhaus, T., Boedeker, W., Faust, M. and Scholze, M. (1998). Predictability and assessment of the aquatic toxicity of mixtures of substances—multicomponent mixtures of dissimilarly acting chemicals at low effect concentrations (in German). UFZ-Bericht Nr. 25/1998, Leipzig, Germany, Umweltforschungszentrum Leipzig-Halle GmbH.Google Scholar
  25. Henschler, D., Bolt, H.M., Jonker, D., Pieters, M.N. and Groten, J.P. (1996). Experimental designs and risk assessment in combination toxicology: panel discussion. Food Chem. Toxicol. 34 , 1183–5.Google Scholar
  26. Hermens, J., Broekhuysen, E., Canton, H. and Wegman, R. (1985a). Quantitative structure-activity relationships and mixture toxicity studies of alcohols and chlorohydrocarbons: effects on growth of Daphnia magna . Aquatic Toxicol. 6 , 209–17.Google Scholar
  27. Hermens, J., Busser, F., Leeuwangh, P. and Musch, A. (1985b). Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum : the MICROTOX test. Ecotoxicol. Environ. Safety 9 , 17–25.Google Scholar
  28. Hermens, J., Canton, H., Janssen, P. and Jong, R. (1984a). Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anaesthetic potency: acute lethal and sublethal toxicity to Daphnia magna . Aquatic Toxicol. 5 , 143–54.Google Scholar
  29. Hermens, J., Canton, H., Steyger, N. and Wegmann, R. (1984b). Joint effects of a mixture of 14 chemicals on mortality and inhibition of reproduction of Daphnia magna . Aquatic Toxicol. 5 , 315–22.Google Scholar
  30. Hermens, J. and Leeuwangh, P. (1982). Joint toxicity of mixtures of 8 and 24 chemicals to the guppy (Poecilia reticulata ). Ecotoxicol. Environ. Safety 6 , 302–10.Google Scholar
  31. Hermens, J., Leeuwangh, P. and Musch, A. (1984c). Quantitative structure-activity relationships and mixture toxicity studies of chloro-and alkylanilines at an acute lethal toxicity level to the guppy (Poecilia reticulata ). Ecotoxicol. Environ. Safety 8 , 388–94.Google Scholar
  32. Hermens, J., Leeuwangh, P. and Musch, A. (1985c). Joint toxicity of mixtures of groups of organic aquatic pollutants to the guppy (Poecilia reticulata ). Ecotoxicol. Environ. Safety 9 , 321–6.Google Scholar
  33. Huang, G., Bai, Z., Dai, S. and Xie, Q. (1993). Accumulation and toxic effect of organometallic compounds on algae. Appl. Organometallic Chem. 7 , 373–80.Google Scholar
  34. HyperChem, Re4 for Windows 95 Autodesk Inc. Sausalito, CA.Google Scholar
  35. Jonker, D., Wouterson, R.A. and Feron, V.J. (1996). Toxicity of mixtures of nephrotoxicants with similar or dissimilar mode of action. Food Chem. Toxicol. 34 , 1075–82.Google Scholar
  36. Kauss, P.B. and Hutchinson, T.C. (1975). The effects of water-soluble petroleum components on the growth of Chlorella vulgaris beijerinck . Environ. Pollut. 9 , 157–74.Google Scholar
  37. Kier, L.B. and Hall, L.H. (1986). Molecular Connectivity in Structure-Activity Analysis . UK Research Studies Press Letchworth.Google Scholar
  38. Könemann, H. (1981a). Fish toxicity tests with mixtures of more than two chemicals: a proposal for a quantitative approach and experimental results. Toxicology 19 , 229–38.Google Scholar
  39. Könemann, H. (1981b). Quantitative structure-activity relationships in fish toxicity studies 1. Relationships for 50 industrial pollutants. Toxicology 19 , 209–21.Google Scholar
  40. Könemann, H. and Musch, A. (1981). Quantitative structure-activity relationships in fish toxicity studies. Part 2: The influence of pH on the QSAR of chlorophenols. Toxicology 19 , 223–8.Google Scholar
  41. Kortenkamp, A. and Altenburger, R. (1998). Synergisms with mixtures of xenoestrogens—a reevaluation using the method of isoboles. Sci. Total Environ. 221 , 59–73.Google Scholar
  42. Laskowski, R. (1995). Some good reasons to ban the use of NOEC, LOEC and related concepts in ecotoxicology. Oikos 73 , 140–3.Google Scholar
  43. Lipnick, R.L. (1995). Structure-activity relationships. In G.R. Rand (ed.) Fundamentals of Aquatic Toxicology . 2nd edn. London UK: Taylor & Francis. pp. 609–55.Google Scholar
  44. Leeuwen van, K. (1990). Ecotoxicological effect assessment in the netherlands: recent developments. Environ. Manag. 14 , 779–92.Google Scholar
  45. Millemann, R.E., Birge, W.J., Black, J.A., Cushman, R.M., Daniels, K.L., Franco, P.J. and Giddings, J.M. (1984). Comparative acute toxicity to aquatic organisms of components of coal-derived synthetic fuels. Trans. Am. Fisheries Soc. 113 , 74–85.Google Scholar
  46. Moore, D.R.J. and Caux, P.-Y. (1997). Estimating low toxic effects. Environ. Toxicol. Chem. 16 , 794–801.Google Scholar
  47. Mostafa, I.Y., Shabana, E.F., Khalil, Z. and Mostafa, F.I.Y. (1991). The metabolic fate of 14c-parathion by some fresh water phytoplankton and its possible effects on the algal metabolism. J. Environ. Sci. Health 26 (5/6), 499–512.Google Scholar
  48. Pape-Lyndstrom, P.A. and Lydy, M.J. (1997). Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ. Toxicol. Chem. 11 , 2415–20.Google Scholar
  49. Pöch, G. (1993). Combined Effects of Drugs and Toxic Agents. Modern Evaluation in Theory and Practice . Wien, New York: Springer Verlag.Google Scholar
  50. Ramos, E.U., Vaes, W.H.J., Mayer, P. and Hermens, J.L.M. (1999). Algal growth inhibition of Chlorella pyrenoidosa by polar narcotic pollutants: toxic cell concentrations and QSAR modelling. Aquatic Toxicol. 46 (1), 1–10.Google Scholar
  51. SCAN—Software for Chemometric Analysis, (1995) rel 11 for Windows. Minitab USA.Google Scholar
  52. Schäfer, H., Hettler, H., Fritsche, U., Pitzen, G., Roderer, G. and Wenzel, A. (1994). Biotests using unicellular algae and ciliates for prediciting long-term effects of toxicants. Ecotoxicol. Environ. Safety 27(1) , 64–81.Google Scholar
  53. Scholze, M., Boedeker, W., Faust, M., Backhaus, T., Altenburger, R. and Grimme, L.H. (2001). A general best-fit method for concentration-response curves and the estimation of low-effect concentrations. Environ. Toxicol. Chem. 20 (2), 448–57.Google Scholar
  54. Schüürmann, G. (1998). Ecotoxic modes of action of chemical substances. In G. Schüürmann and B. Markert (eds). Ecotoxicology . New York: John Wiley and Spektrum Akademischer Verlag. pp. 665–749.Google Scholar
  55. Streffer, C., Bücker, J., Cansier, A., Cansier, D., Gethmann, C.F., Guderian, R., Hanekamp, G., Henschler, D., Pöch, G., Rehbinder, E., Renn, O., Slesina, M. and Wuttke, K. (2000). Umweltstandards. Kombinierte Expositionen und ihre Auswirkungen auf den Menschen und seine Umwelt. Europäische Akademie zur Erfoschung von Folgen wissenschaftlichtechnischer Entwicklungen. Bad Neuenahr-Ahrweiler GmbH, Bd. 5. Berlin: Springer.Google Scholar
  56. Todeschini, R. and Consonni, V. (2000a). DRAGON—Software for the calculation of molecular descriptors, version 1.0 for Windows. Free download from http://www.disat.unimib.it/chm.Google Scholar
  57. Todeschini, R. and Consonni, V. (2000b). Handbook of Molecular Descriptors . Weinheim, Germany: Wiley-VCH.Google Scholar
  58. Todeschini, R. and Gramatica, P. (1997). 3-D modelling and prediction by WHIM descriptors. Part 5 Theory development and chemical meaning of the WHIM descriptors. Quantitative Structure-Activity Relationships 16 , 120–5.Google Scholar
  59. Todeschini, R., Lasagni, M. and Marengo, E. (1994). New molecular descriptors for 2D and 3D structures theory. J. Chemomet. 8 , 263–72.Google Scholar
  60. UBA (Umweltbundesamt), (1999). Dokumentation wassergefährdender Stoffe—Datenblattsammlung: Grundwerk mit 3. Ergänzungslieferung. Stand: Juni 1998. Stuttgart, Hirzel.Google Scholar
  61. U.S.-EPA (Environmental Protection Agency) (1978). In-depth studies on health and environmental impacts of selected water pollutants. Contract No. 68–01–4646, Duluth, U.S. EPA.Google Scholar
  62. Walter, H. (2002). Kombinationswirkungen von Umweltchemikalien—Zur Analyse der milieuabhängigen Mischungstoxizität von Kontaminanten mit unbekanntem Wirkungsmechanismus in umweltrelevanten Konzentrationen. Dissertation. Universität Halle-Wittenberg. Dev Andere Verlag, OsmaSrück.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Helge Walter
    • 1
  • Federica Consolaro
    • 2
  • Paola Gramatica
    • 2
  • Martin Scholze
    • 3
  • Rolf Altenburger
    • 1
  1. 1.Department of Chemical EcotoxicologyUFZ Centre for Environmental Research Leipzig-HalleLeipzigGermany
  2. 2.Institute of Cell Biology, Biochemistry and BiotechnologyUniversity of BremenBremenGermany
  3. 3.Department of Structural and Functional BiologyUniversity of InsubriaVareseItaly

Personalised recommendations