Journal of Bioenergetics and Biomembranes

, Volume 30, Issue 3, pp 235–243 | Cite as

Localization at Complex I and Mechanism of the Higher Free Radical Production of Brain Nonsynaptic Mitochondria in the Short-Lived Rat Than in the Longevous Pigeon

  • G. Barja
  • A. Herrero


Free radical production and leak of brain nonsynaptic mitochondria were higher with pyruvate/malate than with succinate in rats and pigeons. Rotenone, antimycin A, and myxothiazol maximally stimulated free radical production with pyruvate/malate but not with succinate. Simultaneous treatment with myxothiazol plus antimycin A did not decrease the stimulated rate of free radical production brought about independently by any of these two inhibitors with pyruvate/malate. Thenoyltrifluoroacetone did not increase free radical production with succinate. No free radical production was detected at Complex IV. Free radical production and leak with pyruvate/malate were higher in the rat (maximum longevity 4 years) than in the pigeon (maximum longevity 35 years). These differences between species disappeared in the presence of rotenone. The results localize the main free radical production site of nonsynaptic brain mitochondria at Complex I. They also suggest that the low free radical production of pigeon brain mitochondria is due to a low degree of reduction of Complex I in the steady state in this highly longevous species.

Aging hydrogen peroxide mitochondria longevity bird 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosio, G., Zweier, J. L., Duilio, C., Kuppusamy, P., Santoro, G., Elia, P. P., Tritto, I., Cirillo, P., Condorelli, M., Chiariello M., and Flaherty, J. T. (1993). J. Biol. Chem. 268, 18532-18541.PubMedGoogle Scholar
  2. Asuncion, J. G., Millan, A., Pla, R., Bruseghini, L., Esteras, A., Pallardo, F. V., Sastre, J., and Viña, J. (1996). FASEB J. 10, 333-338.PubMedGoogle Scholar
  3. Barja, G. (1998). In Methods in Aging Research (Yu, B. P., ed.), CRC Press, Boca Raton, Chapter 23, in press.Google Scholar
  4. Barja, G., Cadenas, S., Rojas, C., Pérez-Campo, R., and López-Torres, M. (1994). Free Radical Res. 21, 317-328.Google Scholar
  5. Boveris, A., Cadenas, E., and Stoppani, O. M. (1976). Biochem J. 153, 435-444.Google Scholar
  6. Cadenas, E., and Boveris, A. (1980). Biochem. J. 188, 31-37.PubMedGoogle Scholar
  7. Calder, W. A. (1985). Exp. Gerontol. 20, 161-170.PubMedGoogle Scholar
  8. Chance, B. (1981). In Oxygen and Living Processes (Gilbert, D., ed.), Springer Verlag, New York, pp. 200-209.Google Scholar
  9. Cino, M., and del Maestro, R. F. (1989). Arch. Biochem. Biophys. 269, 623-638.PubMedGoogle Scholar
  10. Dykens, J. A. (1994). J. Neurochem. 63, 584-591.PubMedGoogle Scholar
  11. Floyd, R. A., Zaleska, M. M., and Harmon, H. J. (1984). In Free Radicals in Molecular Biology, Aging and Disease (Aarmstrong, D., ed.), Raven Press, New York, pp. 143-161.Google Scholar
  12. Hansford, R. G., Hogue, B. A., and Mildaziene, V. (1997) J. Bioenerg. Biomembr. 29, 89-95.PubMedGoogle Scholar
  13. Harman, D. (1994). Age 17, 119-146.Google Scholar
  14. Herrero, A., and Barja, G. (1997a). Mech. Ageing Dev. 98, 95-11.PubMedGoogle Scholar
  15. Herrero, A., and Barja, G. (1997b). J. Bioenerg. Biomembr. 29, 243-251.Google Scholar
  16. Holmes, D. J., and Austad, S. N. (1995). Am. Zool. 35, 307-317.Google Scholar
  17. Ku, H. H., Brunk, U. T., and Sohal, R. S. (1993). Free Radical Biol. Med. 15, 621-627.Google Scholar
  18. Lai C. K., and Clark, J. B. (1979). Methods Enzymol. 55, 51-60.PubMedGoogle Scholar
  19. Lass A., Agarwal, S., and Sohal, R. S. (1997). J. Biol. Chem. 272, 19199-19204.PubMedGoogle Scholar
  20. Matsuno-Yagi, A., and Hatefi, Y. (1996). J. Biol. Chem. 271, 6164-6171.PubMedGoogle Scholar
  21. Nohl, H. (1994). Ann. Biol. Clin. 52, 199-204.Google Scholar
  22. Nohl, H., and Jordan, W. (1986). Biochem. Biophys. Res. Commun. 138, 533-539.PubMedGoogle Scholar
  23. Ozawa, T. (1995). Exp. Gerontol. 30, 269-290.PubMedGoogle Scholar
  24. Pearl R. (1928). In The Rate of Living, University of London Press, London.Google Scholar
  25. Prothero, J., and Jürgens, K. D. (1987). In Evolution of Longevity in Animals, Plenum Press, New York, pp. 49-74.Google Scholar
  26. Reynolds, I. J., and Hastings, T. G. (1995). J. Neurosci. 15, 3318-3327.PubMedGoogle Scholar
  27. Richter, Ch. (1995). Curr. Topics Bioenerg. 17, 1-19.Google Scholar
  28. Shapira, A. H. V. (1994). Movement Disord. 9, 125-138.PubMedGoogle Scholar
  29. Sherratt, H. S. A., Watmough, N. J., Johnson, M. A., and Turnbull, D. M. (1988). Methods Biochem. Anal. 33, 304-305.Google Scholar
  30. Shigenaga, M. K. H., and Ames, B. N. (1994). In Natural Antioxidants in Health and Disease, Academic Press, New York, pp. 63-106.Google Scholar
  31. Sohal, R. S., Svensson, I., Sohal, B. H., and Brunk, U. T. (1989). Mech. Ageing Dev. 49, 129-135.PubMedGoogle Scholar
  32. Sohal, R. S., Svensson, I., and Brunk, U. T. (1990). Mech. Ageing Dev. 53, 209-215.PubMedGoogle Scholar
  33. Sorgato, M. C., Sartorelli, L., Loschen, G., and Azzi, A. (1974). FEBS Lett. 45, 92-95.CrossRefPubMedGoogle Scholar
  34. Takeshige, K., and Minakami, S. (1979). Biochem J. 180, 129-135.PubMedGoogle Scholar
  35. Turrens, J. F., and Boveris, A. (1980). Biochem. J. 191, 421-427.PubMedGoogle Scholar
  36. Yu, B. P., (1996). Free Radical Biol. Med. 21, 651, (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • G. Barja
    • 1
  • A. Herrero
    • 1
  1. 1.Department of Animal Biology-II (Animal Physiology), Faculty of BiologyComplutense UniversityMadridSpain

Personalised recommendations