Antonie van Leeuwenhoek

, Volume 81, Issue 1–4, pp 271–282 | Cite as

Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review

  • David L. Valentine


Evidence supporting a key role for anaerobic methane oxidation in the global methane cycle is reviewed. Emphasis is on recent microbiological advances. The driving force for research on this process continues to be the fact that microbial communities intercept and consume methane from anoxic environments, methane that would otherwise enter the atmosphere. Anaerobic methane oxidation is biogeochemically important because methane is a potent greenhouse gas in the atmosphere and is abundant in anoxic environments. Geochemical evidence for this process has been observed in numerous marine sediments along the continental margins, in methane seeps and vents, around methane hydrate deposits, and in anoxic waters. The anaerobic oxidation of methane is performed by at least two phylogenetically distinct groups of archaea, the ANME-1 and ANME-2. These archaea are frequently observed as consortia with sulfate-reducing bacteria, and the metabolism of these consortia presumably involves a syntrophic association based on interspecies electron transfer. The archaeal member of a consortium apparently oxidizes methane and shuttles reduced compounds to the sulfate-reducing bacteria. Despite recent advances in understanding anaerobic methane oxidation, uncertainties still remain regarding the nature and necessity of the syntrophic association, the biochemical pathway of methane oxidation, and the interaction of the process with the local chemical and physical environment. This review will consider the microbial ecology and biogeochemistry of anaerobic methane oxidation with a special emphasis on the interactions between the responsible organisms and their environment.

acetate anaerobic methane oxidation anoxic environments archaea interspecies hydrogen transfer methane hydrates subsurface biosphere syntrophy sulfate reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alperin MJ (1989) The carbon cycle in an anoxic marine sediment: concentrations, rates, isotope ratios, and diagenetic models. Ph.D. Thesis, University of Alaska, Fairbanks.Google Scholar
  2. Alperin MJ & Reeburgh WS (1984) Geochemical observations supporting anaerobic methane oxidation. In: Crawford R & Hanson R (Eds), Microbial Growth on C-1 Compounds ( pp 282–289). American Society for Microbiology.Google Scholar
  3. Alperin MJ & Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl. Environ. Microbiol. 50: 940–945.PubMedGoogle Scholar
  4. Alperin MJ, Reeburgh WS & Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem. Cycles 2: 279–288.CrossRefGoogle Scholar
  5. Barnes RO & Goldberg ED (1976) Methane production and consumption in anaerobic marine sediments. Geology 4: 297–300.CrossRefGoogle Scholar
  6. Beja O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, Villacorta R, Amjadi M, Garrigues C, Jovanovich SB, Feldman RA & DeLong EF (2000). Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2: 516–529.PubMedCrossRefGoogle Scholar
  7. Berner RA (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press.Google Scholar
  8. Bian L, Hinrichs K-U, Xie T, Brassell SC, Iversen N, Fossing H, Jørgensen BB & Hayes JM (2001) Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane. Geochemistry, Geophysics, Geosystems 2: paper number 2000GC000112.CrossRefGoogle Scholar
  9. Blair NE & Aller RC (1995) Anaerobic methane oxidation on the Amazon shelf. Geochim. Cosmochim. Acta 59: 3707–3715.CrossRefGoogle Scholar
  10. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U & Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626.PubMedCrossRefGoogle Scholar
  11. Borowski WS, Hoehler TM, Alperin MJ, Rodriguez NM & Paull CK (2000) Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates. In: Paull CK, Matsumoto R, Wallace PJ & Dillon WP (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 164 (pp 87–99). (Ocean Drilling Program).Google Scholar
  12. Borowski WS, Paull CK & Ussler W (1996) Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 24: 655–658.CrossRefGoogle Scholar
  13. Borowski WS, Paull CK & Ussler W (1997) Carbon cycling within the upper methanogenic zone of continental rise sediments: An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Marine Chem. 57: 299–311.CrossRefGoogle Scholar
  14. Borowski WS, Paull CK & Ussler W (1999) Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Marine Geol. 159: 131–154.CrossRefGoogle Scholar
  15. Devol AH (1983) Methane oxidation rates in the anaerobic sediments of Saanich Inlet. Limnol. Oceanogr. 28: 738–742.Google Scholar
  16. Devol AH & Ahmed SL (1981) Are high rates of sulfate reduction associated with anaerobic oxidation of methane? Nature 291: 407–408.CrossRefGoogle Scholar
  17. Elvert M, Suess E, Greinert J & Whiticar MJ (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org. Geochem. 31: 1175–1187.CrossRefGoogle Scholar
  18. Elvert M, Suess E and & MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C-20 and C-25 irregular isoprenoids. Naturwissenschaften 86: 295–300.CrossRefGoogle Scholar
  19. Fossing H, Ferdelman TG & Berg P (2000) Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia). Geochim. Cosmochim. Acta 64: 897–910.CrossRefGoogle Scholar
  20. Hansen LB, Finster K, Fossing H & Iversen N (1998) Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aquatic Microbial Ecol. 14: 195–204.Google Scholar
  21. Harder J (1997) Species-independent maintenance energy and natural population sizes. FEMS Microbiol. Ecol. 23: 39–44.CrossRefGoogle Scholar
  22. Hinrichs K-U & Boetius A (in press) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billet D, Hebbeln D, Jørgensen BB, Schlueter M & Weering TV (Eds) Ocean Margin Systems, Springer Verlag, Heidelberg.Google Scholar
  23. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG & DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398: 802–805.PubMedCrossRefGoogle Scholar
  24. Hinrichs K-U, Summons RE, Orphan V, Sylva SP & Hayes JM (2000) Molecular and isotopic analysis of anaerobic methaneoxidizing communities in marine sediments. Org. Geochem. 31: 1685–1701.CrossRefGoogle Scholar
  25. Hoehler TM & Alperin MJ (1996) Anaerobic methane oxidation by a methanogen-sulfate reducer consortium: geochemical evidence and biochemical considerations. In: Microbial Growth on C-1 Compounds (pp 326-333).Google Scholar
  26. Hoehler TM, Alperin MJ, Albert DB & Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment - evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles 8: 451–463.CrossRefGoogle Scholar
  27. Iversen N & Blackburn HT (1981) Seasonal rates of methane oxidation in anoxic marine sediments. Appl. Environ. Microbiol. 41: 1295–1300.PubMedGoogle Scholar
  28. Iversen N & Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30: 944–955.Google Scholar
  29. Iversen N, Oremland R & Klug MJ (1987) Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32: 804–814.Google Scholar
  30. Jørgensen BB, Weber A & Zopfi J (2001) Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Research Part I - Oceanographic Research Papers 48: 2097–2120.CrossRefGoogle Scholar
  31. Joye SB, Connell TL, Miller LG, Oremland RS & Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol. Oceanogr. 44: 178–188.CrossRefGoogle Scholar
  32. Lanoil BD, Sassen R, La Duc MT, Sweet ST & Nealson KH (2001) Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl. Environ. Microbiol. 67: 5143–5153.PubMedCrossRefGoogle Scholar
  33. Lidstrom ME (1983) Methane consumption in Framvaren, an anoxic marine fjord. Limnol. Oceanogr. 28: 1247–1251.Google Scholar
  34. Martens CS, Albert DB & Alperin MJ (1999) Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernforde Bay, German Baltic Sea. Am. J. Sci. 299: 589–610.CrossRefGoogle Scholar
  35. Martens CS & Berner RA (1977) Interstitial water chemistry of Long Island Sound sediments, I, dissolved gases. Limnol. Oceanogr. 22: 10–25.Google Scholar
  36. Nauhaus K, Boetius A, Kruker M & Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulfate reduction in sediment from a marine gas hydrate area. Environ. Microbiol.Google Scholar
  37. Niewohner C, Hensen C, Kasten S, Zabel M & Schulz HD (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim. Cosmochim. Acta 62: 455–464.CrossRefGoogle Scholar
  38. Oremland RS & DesMarais DJ (1983) Distribution, abundance and carbon isotope composition of gaseous hydrocarbons in Big Soda Lake, Nevada: an alkaline meromictic lake. Geochim. Cosmochim. Acta 47: 2107–2114.CrossRefGoogle Scholar
  39. Oremland RS, Miller LG & Whiticar MJ (1987) Sources and fluxes of natural gases from Mono Lake, California. Geochim. Cosmochim. Acta 51: 2915–2929.CrossRefGoogle Scholar
  40. Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM & DeLong EF (2001a) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 67: 1922–1934.PubMedCrossRefGoogle Scholar
  41. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD & DeLong EF (2001b) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293: 484–487.PubMedCrossRefGoogle Scholar
  42. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD & DeLong EF Multiple microbial groups mediate methane oxidation in anoxic marine sediments. Proc. Nat. Acad. Sci.Google Scholar
  43. Pancost RD, Hopmans EC & Sinninghe Damste JSS (2001) Archaeal lipids in Mediterranean cold seeps: Molecular proxies for anaerobic methane oxidation. Geochim. Cosmochim. Acta 65: 1611–1627.CrossRefGoogle Scholar
  44. Pancost RD, Sinninghe Damaste JS, DE Lint S, Van Der Maarel MJEC, Gottschal JC & Science Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and Bacteria. Appl. Environ. Microbiol. 66: 1126–1132.PubMedCrossRefGoogle Scholar
  45. Panganiban AT, Patt TE, Hart W & Hanson RS (1979) Oxidation of methane in the absence of oxygen in lake water samples. Appl. Environ. Microbiol. 37: 303–309.PubMedGoogle Scholar
  46. Paull CK, Lorenson TD, Borowski WS, Ussler III W, Olsen K & Rodriguez NM (2000) Isotopic composition of CH4, CO2 species, and sedimentary organic matter within samples from the Blake Ridge: gas source implications. In: Paull CK, Matsumoto R, Wallace PJ & Dillon WP (Eds) Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 164 (pp 67–78). (Ocean Drilling Program).Google Scholar
  47. Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L & Reitner J (1999) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. Int. J. Earth Sci. 88: 60–75.CrossRefGoogle Scholar
  48. Pimenov NV, Rusanov, II, Poglazova MN, Mityushina LL, Sorokin DY, Khmelenina VN & Trotsenko YA (1997) Bacterial mats on coral-like structures at methane seeps in the Black Sea. Microbiology 66: 354–360.Google Scholar
  49. Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planetary Sci. Lett. 28: 337–344.CrossRefGoogle Scholar
  50. Reeburgh WS (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planetary Sci. Lett. 47: 345–352.CrossRefGoogle Scholar
  51. Reeburgh WS (1996) 'Soft Spots' in the Global Methane Budget. In: Lidstrom ME & Tabita FR (Eds) Microbial Growth on C-1 Compounds (pp 335–342). Kluwer Academic Publishers.Google Scholar
  52. Reeburgh WS & Heggie DT (1977) Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments. Limnol. Oceanogr. 22: 1–9.CrossRefGoogle Scholar
  53. Reeburgh WS, Ward B, Whalen SC, Sandbeck KA, Kilpatrick KA & Kerkhof LJ (1991) Black Sea methane geochemistry. Deep-Sea Research Part a - Oceanographic Research Papers 38: S1189-S1210.Google Scholar
  54. Reeburgh WS, Whalen SC & Alperin MJ (1993) The role of methylotrophy in the global methane budget. In: Murrell JC & Kelley DP (Eds) Microbial Growth on C-1 Compounds (pp 1–14). Kluwer Academic Publishers.Google Scholar
  55. Rusanov II, Galchenko VF, Pimenov NV & Ivanov MV (1994) Microbiology of carbon cycling in the Black Sea methane seep region. Microbiology 63: 499–502.Google Scholar
  56. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262–280.PubMedGoogle Scholar
  57. Schouten S, Wakeham SG & Damste JSS (2001) Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea. Org. Geochem. 32: 1277–1281.CrossRefGoogle Scholar
  58. Scranton MI (1988) Temporal variation in the methane content of the Cariaco Trench. Deep Sea Research part A 35: 1511–1523.CrossRefGoogle Scholar
  59. Smemo K, & Yavitt JB (2000) Evidence for anaerobic methane oxidation in freshwater peatlands. Eos Trans. AGU, 81(48), Fall Meet. Suppl., B71C-02.Google Scholar
  60. Sørensen KB, Finster K & Ramsing NB (2001) Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microbial Ecol. 42: 1–10.Google Scholar
  61. Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G & Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planetary Sci. Lett. 170: 1–15.CrossRefGoogle Scholar
  62. Summons RE, Franzmann PD & Nichols PD (1998) Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org. Geochem. 28: 465–475.CrossRefGoogle Scholar
  63. Thiel V, Peckmann J, Richnow HH, Luth U, Reitner J & Michaelis W (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chem. 73: 97–112.CrossRefGoogle Scholar
  64. Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J & Michaelis W (1999) Highly isotopically depleted isoprenoids: Molecular markers for ancient methane venting. Geochim. Cosmochim. Acta 63: 3959–3966.CrossRefGoogle Scholar
  65. Thomsen TR, Finster K & Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol. 67: 1646–1656.PubMedCrossRefGoogle Scholar
  66. Tryon MD & Brown KM (2001) Complex flow patterns through Hydrate Ridge and their impact on seep biota. Geophys. Res. Lett. 28: 2863–2866.CrossRefGoogle Scholar
  67. Tryon MD, Brown KM, Torres ME, Trehu AM, McManus J & Collier RW (1999) Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia. Geology 27: 1075–1078.CrossRefGoogle Scholar
  68. Valentine DL (2001) Thermodynamic ecology of hydrogen-based syntrophy. In: Seckbach J (Ed) Symbiosis: Mechanisms and Model Systems, 147–161 Kluwer Academic Publishers, Dordrecht.Google Scholar
  69. Valentine DL, Blanton DC & Reeburgh WS (2000) Hydrogen production by methanogens under low-hydrogen conditions. Arch. Microbiol. 174: 415–421.PubMedCrossRefGoogle Scholar
  70. Valentine DL & Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2: 477–484.PubMedCrossRefGoogle Scholar
  71. Ward BB, Kilpatrick KA, Novelli PC & Scranton MI (1987) Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters. Nature 327: 226–229.CrossRefGoogle Scholar
  72. Ward BB, Kilpatrick KA, Wopat AE, Minnich EC & Lidstrom ME (1989) Methane oxidation in Saanich Inlet during summer stratification. Continental Shelf Res. 9: 65–75.CrossRefGoogle Scholar
  73. Whiticar MJ (1996) Isotope tracking of microbial methane formation and oxidation. Mitt. Internat. Verein. Limnol. 25: 39–54.Google Scholar
  74. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161: 291–314.CrossRefGoogle Scholar
  75. Whiticar MJ & Faber E (1986) Methane oxidation in sediment and water column environments-Isotope evidence. Adv. Org. Geochem. 10: 759–768.CrossRefGoogle Scholar
  76. Whitman WB, Coleman DC & Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578–6583.PubMedCrossRefGoogle Scholar
  77. Zehnder AJ & Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137: 420–432.PubMedGoogle Scholar
  78. Zehnder AJ & Brock TD (1980) Anaerobic methane oxidation: occurrence and ecology. Appl. Environ. Microbiol. 39: 194–204.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • David L. Valentine
    • 1
    • 2
  1. 1.Scripps Institution of Oceanography-0202University of California at San DiegoSan DiegoUSA
  2. 2.Department of Geological SciencesUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations