Antonie van Leeuwenhoek

, Volume 81, Issue 1–4, pp 639–654 | Cite as

Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication

  • Vincent G.H. Eijsink
  • Lars Axelsson
  • Dzung B. Diep
  • Leiv S. Håvarstein
  • Helge Holo
  • Ingolf F. Nes
Article

Abstract

Lactic acid bacteria (LAB) fight competing Gram-positive microorganisms by secreting anti-microbial peptides called bacteriocins. Peptide bacteriocins are usually divided into lantibiotics (class I) and non-lantibiotics (class II), the latter being the main topic of this review. During the past decade many of these bacteriocins have been isolated and characterized, and elements of the genetic mechanisms behind bacteriocin production have been unravelled. Bacteriocins often have a narrow inhibitory spectrum, and are normally most active towards closely related bacteria likely to occur in the same ecological niche. Lactic acid bacteria seem to compensate for these narrow inhibitory spectra by producing several bacteriocins belonging to different classes and having different inhibitory spectra. The latter may also help in counteracting the possible development of resistance mechanisms in target organisms. In many strains, bacteriocin production is controlled in a cell-density dependent manner, using a secreted peptide-pheromone for quorum-sensing. The sensing of its own growth, which is likely to be comparable to that of related species, enables the producing organism to switch on bacteriocin production at times when competition for nutrients is likely to become more severe. Although today a lot is known about LAB bacteriocins and the regulation of their production, several fundamental questions remain to be solved. These include questions regarding mechanisms of immunity and resistance, as well as the molecular basis of target-cell specificity.

anti-microbial peptide bacteriocin immunity lactic acid bacteria pheromone quorum sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abee T (1995) Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol. Lett. 129: 1–10.PubMedGoogle Scholar
  2. Anderssen EL, Diep DB, Nes IF, Eijsink VGH & Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microbiol. 64: 2269–2272.PubMedGoogle Scholar
  3. Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S & Von Wright A (Eds) Lactic Acid Bacteria; Microbiology and Functional Aspects, (pp 1–72). Marcel Dekker Inc., New York.Google Scholar
  4. Axelsson L & Holck A (1995) The genes involved in prodcution of and immunity to sakacin A, a bacteriocin from Lactobacillus sakei Lb706. J. Bacteriol. 177: 2125–2137.PubMedGoogle Scholar
  5. Axelsson L, Katla T, Bjørnslett M, Eijsink VGH & Holck A (1998) A system for heterologous expression of bacteriocins in Lactobacillus sakei. FEMS Microbiol. Lett. 168: 137–148.CrossRefPubMedGoogle Scholar
  6. Aymerich T, Holo, H, Håvarstein, LS, Hugas m, Garriga m & Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 62: 1676–1682.PubMedGoogle Scholar
  7. Aymerich T, Artigas MG, Garriga M, Montfort JM & Hugas M (2000) Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J. Appl. Microbiol. 88: 686–694.CrossRefPubMedGoogle Scholar
  8. Baba T & Schneewind O (1998) Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol. 6: 66–71.CrossRefPubMedGoogle Scholar
  9. Bennik MHJ, Verheul A, Abee T, Naaktgeboren-Stoffels G, Gorris LGM & Smid EJ (1997) Interactions of nisin and pediocin PA-1 with closely related lactic acid bacteria that manifest over 100-fold differences in bacteriocin sensitivity. Appl. Environ. Microbiol. 63: 3628–3636.PubMedGoogle Scholar
  10. Bennik MHJ, Vanloo B, Brasseur R, Gorris LGM & Smid EJ (1998) A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: full characterization and interaction with target organisms. Biochim. Biophys. Acta 1373: 47–58.CrossRefPubMedGoogle Scholar
  11. Bhugaloo-Vial P, Dousset X, Metivier A, Sorokine O, Anglade P, Boyaval P & Maron D (1996) Purification and amino acid sequences of piscicocins V1a and V1b, tow class IIa bacteriocins secreted by Carnobacterium piscicola V1 that display significantly different levels of specific inhibitory activity. Appl. Environ. Microbiol. 62: 4410–4416.PubMedGoogle Scholar
  12. Breukink E & De Kruijff (1999) The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta 1462: 223–234.CrossRefPubMedGoogle Scholar
  13. Breukink E, Wiedemann I, Van Kraaij C, Kuipers OP, Sahl H-G & De Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361–2364.CrossRefPubMedGoogle Scholar
  14. Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G & Sahl HG (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 30: 317–327.CrossRefPubMedGoogle Scholar
  15. Bruno MEC & Montville TJ (1993) Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 59: 3003–3010.PubMedGoogle Scholar
  16. Brurberg MB, Nes IF & Eijsink VGH (1997) Pheromone-induced production of antimicrobial peptides in Lactobacillus.Mol. Microbiol. 26: 347–360.CrossRefPubMedGoogle Scholar
  17. Callewaert R, Hugas M & De Vuyst L (2000) Competitiveness and bacteriocin production of Enterococci in the production of Spanish-style dry fermented saucages. Int. J. Food Microbiol. 57: 33–42.CrossRefGoogle Scholar
  18. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernández PE & Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143: 2287–2294.PubMedGoogle Scholar
  19. Chen Y, Ludescher RD & Montville TJ (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl. Environ. Microbiol. 63: 4770–4777.PubMedGoogle Scholar
  20. Chikindas ML, García-Garcera MJ, Driessen AJM, Ledeboer AM, Nissen-Meyer J, Nes IF, Abee T, Konings WN & Venema G (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Envrion. Microbiol. 59: 3577–3584.Google Scholar
  21. Cintas LM, Casaus P, Holo H, Hernández PE, Nes IF & Håvarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J. Bacteriol. 180: 1988–1994.PubMedGoogle Scholar
  22. Cintas LM, Casaus P, Herranz C, Håvarstein LS, Holo H, Hernández PE & Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces Enterocins L50A and L50B, the sec-dependent Enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed Enetrocin Q. J. Bacteriol. 182: 6806–6814.CrossRefPubMedGoogle Scholar
  23. Cintas LM, Casaus P, Håvarstein LS, Hernández PE & Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 63: 4321–4330.PubMedGoogle Scholar
  24. Claverys JP & Håvarstein LS (2002) Extracellular peptide control of competence for genetic transformation in Streptococcus pneumoniae. Front. Biosci., in press.Google Scholar
  25. Dalet K, Cenatiempo Y, Cossart P, The European Listeria Genome Consortium & Héchard Y (2001) A δ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147: 3263–3269.PubMedGoogle Scholar
  26. Dayem MA, Fleury Y, Devilliers G, Chaboisseau E, Girard R, Nicolas P & Delfour A (1996) The putative immunity protein of the Gram-positive bacteria Leuconostoc mesenteroides is preferentially located in the cytoplasmic compartment. FEMS Microbiol. Lett. 138: 251–259.CrossRefPubMedGoogle Scholar
  27. DeSazieu A, Gardes C, Flint N, Wagner C, Kamber M, Mitcehll TJ, Kekck W, Amrein KE & Lange R (2000) Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J Bacteriol. 182: 4696–4703.CrossRefGoogle Scholar
  28. Diep DB, Axelsson L, Grefsli C & Nes IF (2000) The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology 146: 2155–2160.PubMedGoogle Scholar
  29. Diep DB, Håvarstein LS & Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Microbiol. 18: 631–639.CrossRefPubMedGoogle Scholar
  30. Diep DB, Håvarstein LS & Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J. Bacteriol. 178: 4472–4483.PubMedGoogle Scholar
  31. Diep DB, Johnsborg O, Risøen PA & Nes IF (2001) Evidence for dual functionality of the operon plnABCD in the regulation of bacteriocin production in Lactobacillus plantarum. Mol. Microbiol. 41: 633–644.CrossRefPubMedGoogle Scholar
  32. Donvito B, Etienne J, Denoroy L, Greenland T, Benito Y & Vandenesch F (1997) Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect. Immun. 65: 95–100.PubMedGoogle Scholar
  33. Driessen AJM, Van den Hooven HW, Kuiper W, Van den Kemp M, Sahl HG, Konings RNH & Konings WN (1995) Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry 34: 1606–1614.CrossRefPubMedGoogle Scholar
  34. Duffes F, Leroi F, Dousset X & Boyaval P (2000) use of bacteriocin producing Carnobacterium piscicola strain, isolated from fish, to control Listeria monocytogenes development in vacuum-packed cold-smoked salmon stored at 4 degrees C. Sciences des Aliments 20: 153–158.Google Scholar
  35. Dykes GA (1995) Bacteriocins: ecological and evolutionary significance. Trends Ecol. Evol. 10: 186–189.CrossRefGoogle Scholar
  36. Ehrmann MA, Remiger A, Eijsink VGH & Vogel RF (2000) A gene cluster encoding planatricin 1.25 ß and other bacteriocin-like peptides in Lactobacillus plantarum TMW1.25. Bioch. Biophys. Acta 1490: 355–361.Google Scholar
  37. Eijsink VGH, Brurberg MB, Middelhoven PJ & Nes IF (1996) Induction of bacteriocin prodcution in Lactobacillus sakei by a secreted peptide. J. Bacteriol. 178: 2232–2237.PubMedGoogle Scholar
  38. Eijsink VGH, Skeie M, Middelhoven PH, Brurberg MB & Nes IF (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 64: 3275–3281.PubMedGoogle Scholar
  39. Ennahar S, Sashihara T, Sonomoto K & Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev. 24: 85–106.CrossRefPubMedGoogle Scholar
  40. Ennahar S, Sonomoto K & Ishizaki A (1999) Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation. J. Biosci. Bioeng. 87: 705–716.CrossRefPubMedGoogle Scholar
  41. Fimland G, Blingsmo OR, Sletten K, Jung G, Nes IF & Nissen-Meyer J (1996) New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl. Environ. Microbiol. 62: 3313–3318.PubMedGoogle Scholar
  42. Fimland G, Jack R, Jung G, Nes IF & Nissen-Meyer J (1998) The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center towards the C-terminus. Appl. Environ. Microbiol. 64: 5057–5060.PubMedGoogle Scholar
  43. Fimland G, Johnsen L, Axelsson L, Brurberg MB, Nes IF, Eijsink VGH & Nissen-Meyer J (2000) A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J. Bacteriol. 182: 2643–2648.CrossRefPubMedGoogle Scholar
  44. Fimland G, Eijsink VGH & Nissen-Meyer J (2002) Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry, in press.Google Scholar
  45. Fleury Y, Dayem MA, Montagne JJ, Chaboisseau E, Le Caer JP, Nicolas P & Delfour A (1996) Covalent structure, synthesis and structure-function studies of mesentericin Y 10537, a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides. J. Biol. Chem. 271: 14421–14429.CrossRefPubMedGoogle Scholar
  46. Franz CMAP, Worobo RW, Quadri LEN, Schillinger U, Holzapfel WH, Vederas JC & Stiles ME (1999) Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE900. Appl. Environ. Microbiol. 65: 2170–2178.PubMedGoogle Scholar
  47. Franz CMAP, Van Belkum MJ, Worobo RW, Vederas JC & Stiles ME (2000) Characterization of the genetic locus responsible for production and immunity of carnobacteriocin A: the immunity gene confers cross-protection to enterocin B. Microbiology 146: 621–631.PubMedGoogle Scholar
  48. Fremaux C, Héchard Y & Cenatiempo Y (1995) Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141: 1637–1645.PubMedGoogle Scholar
  49. Fregeau Gallagher NL, Sailer M, Niemczura WP, Nakashima TT, Stiles ME & Vederas JC (1997) Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36: 15062–15072.CrossRefPubMedGoogle Scholar
  50. Gonzalez B, Glaasker E, Kunji ERS, Driessen AJM, Suarez JE & Konings WN (1996) Bactericidal mode of action of plantaricin C. Appl. Environ. Microbiol. 62: 2701–2709.PubMedGoogle Scholar
  51. Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC & Stiles ME (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene form Leuconostoc gelidum. J. Bacteriol. 173: 7491–7500.PubMedGoogle Scholar
  52. Hauge HH, Nissen-Meyer J, Nes IF & Eijsink VGH (1998a) Amphiphilic α-helices are important structural motifs in the α and β peptides that constitute the bacteriocin lactococcin G. Enhancement of helix formation upon α-β-interaction. Eur. J. Biochem. 251: 565–572.CrossRefPubMedGoogle Scholar
  53. Hauge HH, Mantzilas D, Moll GN, Konings WN, Driessen AJM, Eijsink VGH & Nissen-Meyer J (1998b) Plantaricin A is an amphiphilic α-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37: 16026–16032.CrossRefPubMedGoogle Scholar
  54. Hauge HH, Mantzilas D, Eijsink VGH & Nissen-Meyer J (1999) Membrane-mimicking entities induce structuring of the two-component bacteriocins plantaricin E/F and plantaricin J/K. J. Bacteriol. 181: 740–747.PubMedGoogle Scholar
  55. Håvarstein LS, Diep DB & Nes IF (1995) A family of ABC-transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 16: 229–240.PubMedGoogle Scholar
  56. Håvarstein LS, Holo H & Nes H (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140: 2383–2389.PubMedGoogle Scholar
  57. Håvarstein LS & Morrison DA (1999) Quorum-sensing and peptide pheromones in streptococcal competence for genetic transformation. In: Dunny GM & Winans SC (Eds) Cell-Cell Signaling in Bacteria (pp 9–26). American Society for Microbiology, Washington D.C.Google Scholar
  58. Héchard Y, Pelletier C, Cenatiempo, Y & Frere, J (2001) Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII Man ) is involved in sensitivitiy to a bacteriocin, mesentericin Y105. Microbiology 147: 1575–1580.PubMedGoogle Scholar
  59. Henderson JT, Chopko AL & Van Wassenaar PD (1992) Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch. Biochem. Biophys. 295: 5–12.CrossRefPubMedGoogle Scholar
  60. Herranz C, Chen Y, Chung HJ, Cintas LM, Hernandez PE, Montville TJ & Chikindas MJ (2001a) Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl. Environ. Microbiol. 67: 1689–1692.CrossRefPubMedGoogle Scholar
  61. Herranz C, Cintas LM, Hernandez PE, Moll GN & Driessen AJM (2001b) Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cells. Antimicr. Agents Chemoth. 45: 901–904.CrossRefGoogle Scholar
  62. Holo H & Nes IF (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55: 50–61.CrossRefPubMedGoogle Scholar
  63. Holo H, Jeknic Z, Daeschel M, Stevanovic S & Nes IF (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147: 643–651.PubMedGoogle Scholar
  64. Hühne K, Holck A, Axelsson L & Kroeckel L (1996) Analysis of the sakacin P gene cluster from Lactobacillus sakei Lb674 and its expression in sakacin-negative Lb. sakei strains. Microbiology 142: 1437–1448.PubMedGoogle Scholar
  65. Jack RW, Wan J, Gordon J, Harmark K, Davidson BE, Hillier AJ, Wettenhall REH, Hickey MW & Coventry MJ (1996) Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl. Environ. Microbiol. 62: 2897–2903.PubMedGoogle Scholar
  66. Johnsen L, Fimland G, Eijsink VGH & Nissen-Meyer J (2000) Engineering increased stability in the antimicrobial peptide pediocin PA-1. Appl. Environ. Microbiol. 66: 4798–4802.CrossRefPubMedGoogle Scholar
  67. Kaiser AL & Montville TJ (1996) Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Appl. Envrion. Microbiol. 62: 4529–4535.Google Scholar
  68. Kalmokoff ML, Banerjee SK, Cyr T, Hefford MA & Gleeson T (2001) Identification of a new plasmid-encoded sec-dependent bacteriocin produced by Listeria innocua 743. Appl. Environ. Microbiol. 67: 4041–4047.CrossRefPubMedGoogle Scholar
  69. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39–86.PubMedGoogle Scholar
  70. Kleerebezem M, De Vos WM & Kuipers OP (1999) The lantibiotics nisin and subtilin act as extracellular regulators of their own synthesis. In: Dunny GM & Winans SC (Eds) Cell-Cell Signaling in Bacteria (pp 159–174). American Society for Microbiology, Washington D.C.Google Scholar
  71. Kleerebezem M & Quadri LEN (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behaviour. Peptides 22: 1579–1596.CrossRefPubMedGoogle Scholar
  72. Kleerebezem M, Kuipers OP, De Vos WM, Stiles ME & Quadri LEN (2001) A two-component signal-transduction cascade in Carnobacterium piscicola LV17B: two signalling peptides and one sensor-transmitter. Peptides 22: 1597–1601.CrossRefPubMedGoogle Scholar
  73. Kuipers OP, Beerthuyzen Mm, De Ruyter PGGA, Luesink EJ & De Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299–27304.CrossRefPubMedGoogle Scholar
  74. Lacks SA & Greenberg B (2001) Constitutive competence for genetic transformation in Streptococcus pneumoniae caused by mutation of a transmembrane histidine kinase. Mol. Microbiol. 42: 1035–1045.CrossRefPubMedGoogle Scholar
  75. Larsen AG, Vogensen FK & Josephsen J (1993) Antimicrobial activity of lactic acid bacteria isolated from sour doughs; purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol. 75: 113–122.PubMedGoogle Scholar
  76. Leal MV, Baras M, Ruiz-Barba JL, Floriano B & Jimenez-Diaz R (1998) Bacteriocin production and competitiveness of Lactobacillus plantarum LPCO10 in olive juice broth, a culture medium obtained from olives. Int. J. Food Microbiol. 43: 129–134.CrossRefPubMedGoogle Scholar
  77. LeMarrec C, Hyronimus B, Bressollier P, Verneuil B & Urdaci MC (2000) Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl. Environ. Microbiol. 66: 5213–4220.CrossRefGoogle Scholar
  78. Lian LY, Chan WC, Morley SD, Roberts GCK, Bycroft BW & Jackson D (1992) Solution structures of nisin A and its 2 major degradation products determined by NMR. Biochem. J. 283: 413–420.PubMedGoogle Scholar
  79. Marciset O, Jeronimus-Stratingh MC, Mollet B & Poolman B (1997) Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J. Biol. Chem. 272: 14277–14284.CrossRefPubMedGoogle Scholar
  80. Martin B, Prudhomme M, Alloing G, Granadel C & Claverys JP (2000) Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol. Microbiol. 38: 867–878.CrossRefPubMedGoogle Scholar
  81. Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LCM & Vandenbergh, PA (1992) Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 58: 2360–2367.PubMedGoogle Scholar
  82. McAuliffe O, Ross RP & Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25: 285–308.CrossRefPubMedGoogle Scholar
  83. McCafferty DG, Cudic P, Yu MK, Behenna DC & Kruger R (1999) Synergy and duality in peptide antibiotic mechanisms. Curr. Opin. Chem. Biol. 3: 672–680.CrossRefPubMedGoogle Scholar
  84. Metivier A, Pilet MF, Dousset X, Sorokine O, Anglade P. Zagorec M, Piard JC, Marion D, Cenatiempo Y & Frmaux C (1998) Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiology 144: 2837–2844.PubMedGoogle Scholar
  85. Michiels J, Dirix G, Vanderleyden J & Xi C (2001) Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria. Trends Microbiol. 9: 164–168.CrossRefPubMedGoogle Scholar
  86. Miller K, Schamber R, Osmanagaoglu O & Ray B (1998) Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl. Environ. Microbiol. 64: 1997–2005.PubMedGoogle Scholar
  87. Ming XT, Weber GH, Ayres JW & Sandine WE (1997) Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci. 62: 413–415.CrossRefGoogle Scholar
  88. Moll GN, Ubbink-Kok T, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN & Driessen AJM (1996) Lactococcin G is a potassium ion-conducting two-component bacteriocin. J. Bacteriol. 178: 600–650.PubMedGoogle Scholar
  89. Moll GN, Van den Akker E, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN & Driessen AJM (1999a) Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK. J. Bacteriol. 181: 4848–4852.PubMedGoogle Scholar
  90. Moll GN, Konings WN & Driessen AJM (1999b) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek 76: 185–189.CrossRefPubMedGoogle Scholar
  91. Montville TJ & Chen Y (1998) Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl. Microbiol. Biotechnol. 50: 511–519.CrossRefPubMedGoogle Scholar
  92. Møretrø T (2000) Optimization of production of the bacteriocin sakacin P by Lactobacillus sakei; cultural conditions and genetics. Academic Thesis, Agricultural University of Norway.Google Scholar
  93. Motlagh AM, Bhunia AK, Szostek F, Hansen TR, Johnson MC & Ray B (1992) Nucleotide and amino-acid sequence of pap-gene (pediocin AcH production in Pediococcus acidolactici H. Lett. Appl. Microbiol. 15: 45–48.PubMedGoogle Scholar
  94. Navaratna MA, Sahl HG & Tagg JR (1998) Two-component anti-Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl. Environ. Microbiol. 64: 4803–4808.PubMedGoogle Scholar
  95. Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink VGH & Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70: 113–128.CrossRefPubMedGoogle Scholar
  96. Nes IF & Eijsink VGH (1999) Regulation of group II peptide bacteriocin synthesis by quorum-sensing mechanisms. In: Dunny GM & Winans SC (Eds) Cell-Cell Signaling in Bacteria (pp 175–192). American Society for Microbiology, Washington D.C.Google Scholar
  97. Nes IF & Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55: 50–61.CrossRefPubMedGoogle Scholar
  98. Nieto Lozano JC, Nissen Meyer J, Sletten K, Pelaz C & Nes IF (1992) Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J. Gen. Microbiol. 138: 1985–1990.PubMedGoogle Scholar
  99. Nilsen T, Nes IF & Holo H (1998) An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J. Bacteriol. 180: 1848–1854.PubMedGoogle Scholar
  100. Nissen-Meyer J, Håvarstein LS, Holo G, Sletten K & Nes IF (1993) Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J. Gen. Microbiol. 139: 1503–1509.PubMedGoogle Scholar
  101. Nissen-Meyer J, Holo H, Håvarstein LS, Sletten K & Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174: 5686–5692.PubMedGoogle Scholar
  102. Ojcius DM & Young JDE (1991) Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem. Sci. 16: 225–229.CrossRefPubMedGoogle Scholar
  103. Oumer A, Gaya P, Fernandez-Garcia E, Mariaca R, Garde S, Medina M & Nunez M (2001) Proteolysis and formation of volatile compounds in cheese manufactured with a bacteriocin-producing adjunct culture. J. Dairy Res. 68: 117–129.CrossRefPubMedGoogle Scholar
  104. Papathanasopoulos MA, Dykes GA, Revol-Junelles A-M, Delfour A, Von Holy A & Hastings JW (1998) Sequence and structural relationships of Leucocins A-, B-and C-TA33a from Leuconostioc mesenteroides TA33a. Microbiology 144: 1343–1348.PubMedCrossRefGoogle Scholar
  105. Pei J & Grishin NV (2001) Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem. Sci. 26: 275–277.CrossRefPubMedGoogle Scholar
  106. Quadri LEN, Sailer M, Roy KL, Vederas JC & Stiles ME (1994) Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J. Biol. Chem. 269: 12204–12211.PubMedGoogle Scholar
  107. Quadri LEN, Sailer M, Terebiznik MR, Roy KL, Vederas JC & Stiles ME (1995) Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J. Bacteriol. 177: 1144–1151.PubMedGoogle Scholar
  108. Quadri LEN, Yan LZ, Stiles ME & Vederas JC (1997a) Effect of amino acid substitutions on the activity of carnobacteriocins B2. J. Biol. Chem. 272: 3384–3388.CrossRefPubMedGoogle Scholar
  109. Quadri LEN, Kleerebezem M, Kuipers OP, De Vos WM, Roy KL, Vederas JC & Stiles ME (1997b) Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence fro global inducer-mediated transcriptional control. J. Bacteriol. 179: 6163–6171.PubMedGoogle Scholar
  110. Ramnath M, Beukes M, Tamura K & Hastings JW (2000) Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl. Environ. Microbiol. 66: 3098–3101.CrossRefPubMedGoogle Scholar
  111. Reichmann P & Hakenbeck R (2000) Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol. Lett. 190: 231–236.CrossRefPubMedGoogle Scholar
  112. Riley MA & Gordon DM (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7: 129–133.CrossRefPubMedGoogle Scholar
  113. Risøen PA, Håvarstein LS, Diep BD & Nes IF (1998) Identification of the DNA-binding sites fro two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Gen. Genet. 259: 224–232.PubMedGoogle Scholar
  114. Risøen PA, Brurberg MB, Eijsink VGH & Nes IF (2000) Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Mol. Microbiol. 37: 619–628.CrossRefPubMedGoogle Scholar
  115. Risøen PA, Johnsborg O, Diep DB, Hamoen L, Venema G & Nes IF (2001) Regulation of bacteriocin production in Lactobacillus plantarum depends on a conserved promoter arrangement with consensus binding sequence. Mol. Genet. Genomics 265: 198–206.CrossRefPubMedGoogle Scholar
  116. Ruiz-Barba JL, Cathart DP, Warner PJ & Jimenez-Diaz R (1994) Use of Lactobacillus plantarum LPCO10, a bacteriocin producer, as a starter culture in Spanish-style green oliv fermentations. Appl. Environ. Microbiol. 60: 2059–2064.PubMedGoogle Scholar
  117. Ryan MP, Rea MC, Hill C & Ross RP (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl. Environ. Microbiol. 64: 612–619.Google Scholar
  118. Ryan MP, Jack RW, Josten M, Sahl HG, Ross RP & Hill C (1999) Extensive post-translational modification, including serine to D-alanine conversion, in the two-component lantibiotic lacticin 3147. J. Biol. Chem. 274: 37544–37550.CrossRefPubMedGoogle Scholar
  119. Ryan MP, Ross RP & Hill C (2001) Strategy for manipulation of cheese flora using combinations of lacticin 3147-producing and resistant cultures. Appl. Environ. Microbiol. 67: 2699–2704.CrossRefPubMedGoogle Scholar
  120. Sahl HG & Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Ann. Rev. Microbiol. 52: 41–79.CrossRefGoogle Scholar
  121. Saucier L, Poon A & Stiles ME (1995) Induction of bacteriocin production in Carnobacterium piscicola LV17. J. Appl. Microbiol. 78: 684–690.Google Scholar
  122. Schnell N, Entian KD, Schneider U, Götz F, Zahner H, Kellner R & Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide rings. Nature 333: 276–278.CrossRefPubMedGoogle Scholar
  123. Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF & Hammes WP (1992) Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sakei LTH673. System. Appl. Microbiol. 15: 460–468.Google Scholar
  124. Tomita H, Fujimoto S, Tanimoto K & Ike Y (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J. Bacteriol. 178: 3583–3593.Google Scholar
  125. Van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN & Abee T (1991) The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-dependent, protein-mediated manner. J. Bacteriol. 173: 7934–7941.PubMedGoogle Scholar
  126. Van Belkum MJ, Worobo RW & Stiles ME (1997) Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol. Microbiol. 23: 1293–1301.CrossRefPubMedGoogle Scholar
  127. Van den Hooven HW, Doeland CCM, Van de Kamp M, Konings RNH, Hilbers CW & Van de Ven FJM (1996) Three-dimensional structure of the lantibiotic nisin in the presence of membrane-mimetic micelles of dodecylphosphocholine and sodium dodecylphosphate. Eur. J. Biochem. 235: 382–393.CrossRefPubMedGoogle Scholar
  128. Van den Hooven HW, Fogolari F, Rollema HS, Konings RNH, Hilbers CW & Van de Ven FJM (1993) NMR and circular dichroism studies of the lantibiotic nisin in non-aqueous environments. FEBS Lett. 319: 189–194.CrossRefPubMedGoogle Scholar
  129. Van de Ven FJM, Van den Hooven HW, Konings RNH & Hilbers CW (1991) NMR-studies of lantibiotics - The structure of nisin in aqueous solution. Eur. J. Biochem. 202: 1181–1188.CrossRefPubMedGoogle Scholar
  130. Venema K, Venema G & Kok J (1995) Lactococcal bacteriocins: mode of action and immunity. Trends Microbiol. 8: 299–304.CrossRefGoogle Scholar
  131. Vogel RF, Pohle BS, Tichczek PS & Hammes WP (1993) The competitive advantage of Lactobacillus curvatus LTH1174 in sausage fermentations is caused by formation of curvacin A. Syst. Appl. Microbiol. 16: 457–462.Google Scholar
  132. Wang Y, Henz ME, Fregeau Gallagher N, Chai S, Gibbs AC, Yan LZ, Stiles ME, Wishart DS & Vederas JC (1999) Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry 38: 15438–15447.CrossRefPubMedGoogle Scholar
  133. Weinbrenner DR, Barefoot SF & Grinstead DA (1997) Inhibition of yoghurt starter cultures by jenseniin G, a Proprionibacterium bacteriocin. J. Dairy Sci. 80: 1246–1253.CrossRefGoogle Scholar
  134. West AH & Stock AM (2001) Histidine kinases and response regulator proteins in two-component signalling systems. Trends Biochem. Sci. 26: 369–376.CrossRefPubMedGoogle Scholar
  135. Yan LZ, Gibbs AC, Stiles ME, Wishart DS & Vederas JC (2000) Analogues of bacteriocins: antimicrobial specificity and interactions of leucocin A with its enantiomer, carnobacteriocin B2, and truncated derivatives. J. Med. Chem. 43: 4579–4581.CrossRefPubMedGoogle Scholar
  136. Yildirim Z, Winters DK & Johnson Mg (1999) Identification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J. Appl. Microbiol. 86: 45–54.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Vincent G.H. Eijsink
    • 1
  • Lars Axelsson
    • 2
  • Dzung B. Diep
    • 1
  • Leiv S. Håvarstein
    • 1
  • Helge Holo
    • 1
  • Ingolf F. Nes
    • 1
  1. 1.Department of Chemistry and BiotechnologyAgricultural University of NorwayÅsNorway; (Author for correspondence)
  2. 2.The Norwegian Food Research InstituteMATFORSKÅsNorway

Personalised recommendations