Advertisement

Czechoslovak Journal of Physics

, Volume 52, Issue 9, pp 1021–1040 | Cite as

Einstein-Maxwell Fields Generated from the γ-Metric and Their Limits

  • L. Richterek
  • J. Novotný
  • J. Horský
Article

Abstract

Two solutions of the coupled Einstein-Maxwell field equations are found by means of the Horský-Mitskievitch generating conjecture. The vacuum limit of those obtained classes of spacetimes is the seed γ-metric and each of the generated solutions is connected with one Killing vector of the seed spacetime. Some of the limiting cases of our solutions are identified with already known metrics, the relations among various limits are illustrated through a limiting diagram. We also verify our calculation through the Ernst potentials. The existence of circular geodesics is briefly discussed in the Appendix.

exact solutions of Einstein-Maxwell fields charged gamma metric Ernst potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Kramer, H. Stephani, E. Herlt, and M.A.H. MacCallum: Exact Solutions of Einstein's Field Equations. Cambridge University Press, Cambridge, 1980.Google Scholar
  2. [2]
    J. Horský and N.V. Mitskievitch: Czech. J. Phys. B 39 (1989) 957.Google Scholar
  3. [3]
    L. Richterek, J. Novotn´y, and J. Horský: Czech. J. Phys. 50 (2000) 925; gr-qc/0003004.Google Scholar
  4. [4]
    W.B. Bonnor: Gen. Rel. Grav. 24 (1992) 551.Google Scholar
  5. [5]
    L. Herrera, F.M. Paiva, and N.O. Santos: J. M ath. Phys. 40 (1999) 4064; gr-qc/9810079.Google Scholar
  6. [6]
    J. Bičák: in Einstein Field Equations and Their Physical Implications (Selected essays in honour of Juergen Ehlers), Lecture Notes in Physics, Vol. 540 (Ed. B.G. Schmidt). Springer-Verlag, Berlin–Heidelberg–New York, 2000; gr-qc/0004016.Google Scholar
  7. [7]
    J. Bičák, D. Lynden-Bell, and J. Katz: Phys. Rev. D 47 (1993) 4334.Google Scholar
  8. [8]
    L. Herrera, F.M.Paiva, and N.O. Santos: gr-qc/9812023, (1998).Google Scholar
  9. [9]
    L. Herrera and J.L.H. Pastora: J. Math. Phys. 41 (2000) 7544; gr-qc/0010003.Google Scholar
  10. [10]
    P.S. Letelier and S.R. Oliveira: Class. Quant. Grav. 15 (1998) 421; gr-qc/9710122.Google Scholar
  11. [11]
    A.Z. Wang, M.F.A. da Silva, and N.O. Santos: Class. Quant. Grav. 14 (1997) 2417; gr-qc/961052.Google Scholar
  12. [12]
    H. Stephani: Ann. Phys. (Leipzig) 9 (2000) SI-168.Google Scholar
  13. [13]
    F.J. Ernst: Phys. Rev. 167 (1968) 1175.Google Scholar
  14. [14]
    F.J. Ernst: Phys. Rev. 168 (1968) 1415.Google Scholar
  15. [15]
    W.B. Bonnor and M.A.P. Martins: Class. Quant. Grav. 8 (1991) 727.Google Scholar
  16. [16]
    W.B. Bonnor: Wissenschaft. Z. der Friedrich-Schiller Universität Jena 39 (1990) 25.Google Scholar
  17. [17]
    W. Rindler and V. Perlick: Gen. Rel. Grav. 22 (1990) 1067.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2002

Authors and Affiliations

  • L. Richterek
    • 1
  • J. Novotný
    • 2
  • J. Horský
    • 3
  1. 1.Department of Theoretical PhysicsPalacký UniversityOlomoucCzech Republic
  2. 2.Department of General PhysicsMasaryk UniversityBrnoCzech Republic
  3. 3.Institute of Theoretical Physics and AstrophysicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations