Studia Logica

, Volume 71, Issue 3, pp 389–414 | Cite as

Correspondence Results for Relational Proof Systems with Application to the Lambek Calculus

  • Wendy MacCaull
  • Ewa Orłlowska

Abstract

We present a general framework for proof systems for relational theories. We discuss principles of the construction of deduction rules and correspondences reflecting relationships between semantics of relational logics and the rules of the respective proof systems. We illustrate the methods developed in the paper with examples relevant for the Lambek calculus and some of its extensions.

Lambek calculus relational logics Rasiowa-Sikorski proof systems correspondence theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andréka, H., and S. Mikulaś, ‘Lambek calculus and its relational semantics. Completeness and incompleteness’, Journal of Logic, Language and Information 3 (1994), 1-37.Google Scholar
  2. [2]
    Avron, A., F. Honsell, M. Miculan, and C. Paravano, ‘Encoding modal logics in logical frameworks’, Studia Logica 60,1, (1998), 161-208.Google Scholar
  3. [3]
    Bachmair, L., and H. Ganzinger, ‘Ordered chaining calculi for first order theories of transitive relations’, Journal of ACM 45,6 (1998), 1007-1049.Google Scholar
  4. [4]
    Basin, D., S. Matthews, and L. Vigano, ‘A modular presentation of modal logics in a logical framework’, Studia Logica 60,1 (1998), 119-160.Google Scholar
  5. [5]
    Buszkowski, W., ‘Mathematical linguistics and proof theory’, in: J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier, Amsterdam, The MIT Press, Cambridge Mass., 1997, pp. 683-735.Google Scholar
  6. [6]
    Buszkowski, W., and M. Kołowska-Gawiejnowicz, ‘Representation of residuated semigroups in some algebras of relations. The method of canonical models’, Fundamenta Informaticae 31 (1997), 1-12.Google Scholar
  7. [7]
    Buszkowski, W., and E. Orłowska, ‘Indiscernibility-based formalization of dependencies in information systems’, in: E. Orłowska (ed.), Incomplete Information: Rough Set Analysis, Studies in Fuzziness and Soft Computing 13, Physica Verlag, 1997, pp. 347-380.Google Scholar
  8. [8]
    Coquand, T., and G. Huet, ‘The calculus of constructions’, Information and Control 76 (1988), 95-120.Google Scholar
  9. [9]
    Demri, S., ‘Sequent calculi for nominal tense logics: a step towards mechanization?’, Lecture Notes in Computer Science 1289, Springer, 1999, 140-154.Google Scholar
  10. [10]
    Demri, S., and E. Orłowska, ‘Logical analysis of demonic nondeterministic programs’, Theoretical Computer Science 166 (1966), 173-202.Google Scholar
  11. [11]
    Došen, K., ‘A brief survey of frames for the Lambek calculus’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 38 (1992), 179-187.Google Scholar
  12. [12]
    Došen, K., and P. Schroeder-Heister (eds.), Substructural Logics, Clarendon Press, Oxford, 1993.Google Scholar
  13. [13]
    Düntsch, I., W. MacCaull, and E. Orłowska, ‘Structures with many-valued information and their relational proof theory’, Proc. of 30th IEEE International Symposium on Multiple-Valued Logic, Portland, Oregon, 2000, pp. 293-301.Google Scholar
  14. [14]
    Düntsch, I., E. Orłowska, and H. Wang, ‘An algebraic and logical approach to the approximation of regions’, Proc. of RelMiCS'2000, Quebec, Canada, 2000, 65-74.Google Scholar
  15. [15]
    Düntsch, I., and E. Orłowska, ‘A proof system for contact relation algebras’, Journal of Philosophical Logic 29 (2000), 241-262.Google Scholar
  16. [16]
    Düntsch, I., and E. Orłowska, ‘Beyond modalities: sufficiency and mixed algebras’, in: E. Orłowska and A. Szałas (eds.), Relational Methods for Computer Science Applications, Physica Verlag, Heidelberg, 2001, pp. 263-285.Google Scholar
  17. [17]
    Frias, M., and E. Orłowska, ‘A proof system for fork algebras and its applications in logics based on intuitionism’, Logique et Analyse 150, 151, 152 (1995), 239-284.Google Scholar
  18. [18]
    Ganziger, H., and V. Sofronie-Stokkermans, ‘Chaining techniques for automated theorem proving in many-valued logics’, Proc. of 30th IEEE International Symposium on Multiple-Valued Logics, Portland, Oregon, 2000, pp. 337-344.Google Scholar
  19. [19]
    Harper, R., F. Honsell, and G. Plotkin, ‘A framework for defining logics’, Journal of ACM 40,1 (1993), 143-184.Google Scholar
  20. [20]
    Konikowska, B., C. Morgan, and E. Orłowska, ‘Relational semantics for arbitrary finite-valued logics’, in: E. Orłowska, and A. Szałas (eds.), Relational Methods in Logic, Algebra and Computer Science, Proc. of RelMiCS'98, Warsaw, 1998, pp. 138-143.Google Scholar
  21. [21]
    Konikowska, B., C. Morgan, and E. Orłowska, ‘A relational formalization of arbitrary finite-valued logics’, Logic Journal of IGPL 6,5 (1998), 755-774.Google Scholar
  22. [22]
    Konikowska, B., and E. Orłowska, ‘A relational formalization of a generic many-valued modal logic’, in: E. Orłowska and A. Szałas (eds.), Relational Methods for Computer Science Applications, Physica Verlag, Heidelberg, 2001, pp. 183-202.Google Scholar
  23. [23]
    Lambek, J., ‘The mathematics of sentence structure’, The American Mathematical Monthly 65 (1958), 154-170.Google Scholar
  24. [24]
    Lambek, J., ‘On the calculus of syntactic types’, in: R. Jakobson (ed.), Structure of Language and Its Mathematical Aspects, AMS, Providence, 1961.Google Scholar
  25. [25]
    Lambek, J., ‘Relations old and new’, in: E. Orłowska and A. Szałas (eds.), Relational Methods for Computer Science Applications, Physica Verlag, Heidelberg, 2001, pp. 135-147.Google Scholar
  26. [26]
    MacCaull, W., ‘Relational proof theory for linear and other substructural logics’, Logic Journal of IGPL 5 (1997), 673-697.Google Scholar
  27. [27]
    MacCaull, W., ‘Relational tableaux for tree models, language models and information networks’, in: E. Orłowska (ed.), Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, Physica Verlag, Heidelberg, 1998, pp. 354-382.Google Scholar
  28. [28]
    MacCaull, W., ‘Relational semantics and a relational proof system for full Lambek calculus’, Journal of Symbolic Logic 63,2 (1998), 623-637.Google Scholar
  29. [29]
    Moortgat, M., ‘Categorial type logics’, in: J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier, Amsterdam, The MIT Press, Cambridge Mass., 1997, pp. 93-177.Google Scholar
  30. [30]
    Ono, H., and Y. Komori, ‘Logics without the contraction rules’, Journal of Symbolic Logic 50 (1985), 169-201.Google Scholar
  31. [31]
    Orłowska, E., ‘Proof system for weakest prespecification’, Information Processing Letters 27 (1988), 309-313.Google Scholar
  32. [32]
    Orłowska, E., ‘Relational interpretation of modal logics’, in: H. Andréka, D. Monk and I. Nemeti (eds.), Algebraic Logic., Col. Math. Soc. J. Bolyai 54, North Holland, Amsterdam, 1988, pp. 443-471.Google Scholar
  33. [33]
    Orłowska, E., ‘Relational proof system for relevant logics’, Journal of Symbolic Logic 57 (1992), 1425-1440.Google Scholar
  34. [34]
    Orłowska, E., ‘Relational proof system for modal logics’, in: H. Wansing (ed.), Proof Theory of Modal Logics, Kluwer, Dordrecht, 1996, pp. 55-77.Google Scholar
  35. [35]
    Orłowska, E., and A. Szałas (eds.), Relational Methods in Logic, Algebra and Computer Science, Proc. of RelMiCS'98, Warsaw, 1998.Google Scholar
  36. [36]
    Pentus, M., ‘Lambek calculus is L-complete’, ILLC Prepublication Series LP-93-14, University of Amsterdam, 1993.Google Scholar
  37. [37]
    Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematics, Polish Science Publishers, Warsaw, 1963.Google Scholar
  38. [38]
    Spencer, B., and W. MacCaull, ReVAT — Relational Validator via Analytic Tableaux, Technical Report, University of New Brunswick, 2001.Google Scholar
  39. [39]
    Szczerba, M., ‘Relational models for the nonassociative Lambek calculus’, in: E. Orłowska and A. Szałas (eds.), Relational Methods for Computer Science Applications, Physica Verlag, Heidelberg, 2001, pp. 149-159.Google Scholar
  40. [40]
    Tarski, A., ‘On the calculus of relations’, Journal of Symbolic Logic 6 (1941), 73-89.Google Scholar
  41. [41]
    Tarski, A., A. Mostowski and A. Robinson, Undecidable Theories, Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam, 1968.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Wendy MacCaull
    • 1
  • Ewa Orłlowska
    • 2
  1. 1.Department of Mathematics, Statistics and Computer ScienceSt. Francis Xavier UniversityAntigonishCanada
  2. 2.National Institute of TelecommunicationsWarsawPoland

Personalised recommendations