Journal of Clinical Immunology

, Volume 19, Issue 4, pp 223–230 | Cite as

Intracerebral Production of Tumor Necrosis Factor-α, a Local Neuroprotective Agent, in Alzheimer Disease and Vascular Dementia

  • Elisabeth Tarkowski
  • Kaj Blennow
  • Anders Wallin
  • Andrzej Tarkowski


The local pattern of proinflammatory cytokine release was studied in Alzheimer disease (AD) and vascular dementia (VAD), by measuring intrathecal levels of IL-1β, IL-6, TNF-α, and its naturally occurring antagonists, soluble TNF receptors I and II. The cytokine levels were related to neuronal damage, as measured by the intrathecal tau concentration, to cerebral apoptosis assessed by levels of Fas/APO-1 and bcl-2, and to clinical variables. In vitro analysis was performed to study the effect of TNF-α on the production of bcl-2, an antiapoptotic factor, by human neuronal cells. Patients with both AD and VAD displayed significantly higher intrathecal levels of TNF-α compared to controls. In addition, patients with AD showed significantly negative correlations between the intrathecal levels of TNF-α and the levels of Fas/APO-1 as well as of tau protein. The level of bcl-2 in supernatants of TNF-α-exposed cultures of human neuronal cells was up to three times higher than in control supernatants. Our study demonstrates intrathecal production of TNF-α in patients with dementias, suggesting that this cytokine may have a neuroprotective role in these neurodegenerative conditions as evidenced by negative correlations between this cytokine and (i) levels of intrathecal Fas/APO-1 and (ii) levels of tau protein, both parameters closely related to brain damage. Our in vitro data suggest that TNF-α exerts its neuroprotective effect by stimulating neuronal cells to express bcl-2, a molecule which downregulates apoptosis.

Dementia tumor necrosis factor-α apoptosis tau protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iqbal K: Prevalence and neurobiology of Alzheimer disease: Some highlights. In Alzheimer's Disease: Basic Mechanisms, Diagnosis and Therapeutic Strategies, K Iqbal, DRC McLachlan, B Winblad, HM Wisniewski (eds). Chichester, Wiley-Interscience, 1991, pp 9-12Google Scholar
  2. 2.
    Rossor M: Disorders of psychic function. Dementia. In Disease of the Nervous System: Clinical Neurobiology, 2nd ed, AK Asbury, GM McKhann, WI McDonald (eds). Philadelphia, W. B. Saunders, 1992, pp 788-794Google Scholar
  3. 3.
    Banati RB, Beyreuter K: Alzheimer's disease. In Neuroglia, H Kettenman, BR Ransom (eds). New York, Oxford, Oxford University Press, 1995, pp 1027-1043Google Scholar
  4. 4.
    McGeer PL, Akiyama H, Itagaki S, McGeer EG: Immune system response in Alzheimer's disease. Can J Neurol Sci 16:516-527, 1989Google Scholar
  5. 5.
    McGeer PL, Itagaki S, Tago H, McGeer EG: Reactive microglia in patients with senile dementia of Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195-200, 1987Google Scholar
  6. 6.
    St. Pierre BA, Merill JE, Dopp JM: Effects of cytokines on the CNS cells: Glia. In Cytokines and the CNS, RM Ransohoff, EN Benveniste (eds). Boca Raton, FL, CRC Press, 1996, pp 151-168Google Scholar
  7. 7.
    Bauer J, Ganter U, Strauss S, Stadtmuller G, Frommberger U, Bauer H, Volk B, Berger M: The participation of interleukin-6 in the pathogenesis of Alzheimer's disease. 45th Forum in Immunology. Res Immunol 143:650-657, 1992Google Scholar
  8. 8.
    Griffin WST, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Araoz C: Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611-7615, 1989Google Scholar
  9. 9.
    Vandenabeele P, Fiers W: Is amyloidogenesis during Alzheimer's disease due to an IL-1-/IL-6-mediated “acute phase response” in the brain? Immunol Today 12:217-219, 1991Google Scholar
  10. 10.
    Goldgaber D, Harris HW, Hla T, Maciag T, Donnely RJ, Jacobsen JS, Vitek MP, Gajdusek DC: Interleukin 1 regulates synthesis of amyloid β-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci USA 86:7606-7610, 1989Google Scholar
  11. 11.
    Brenneman DE, Schultzberg M, Bartfai T, Gozes I: Cytokine regulation of neuronal survival. J Neurochem 58:454-460, 1992Google Scholar
  12. 12.
    Hama T, Miyamoto M, Tsukui H, Nishio C, Hatanaka H: Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neurosci Lett 104:340-344, 1989Google Scholar
  13. 13.
    Frei K, Malipiero UV, Leist TP, Zinckernagel RM, Schwab ME, Fontana A: On the cellular source and function of interleukin-6 produced in the central nervous system in viral diseases. Eur J Immunol 19:689-694, 1989Google Scholar
  14. 14.
    Satoh T, Nakamura S, Taga T, Matsuda T, Hirano T, Kishimoto T, Kasiro Y: Induction of Neuronal differentiation in PC12 cells by B-cell stimulatory factor 2/interleukin 6. Mol Cell Biol 8:3546-3549, 1988Google Scholar
  15. 15.
    Cheng B, Christakos S, Mattson MP: Tumor necrosis factors protect neurons against metabolic-excitatoxic insults and promote maintenance of calcium homeostasis. Neuron 12(1):139-153, 1994Google Scholar
  16. 16.
    Schwartz M, Solomon A, Lavie V, Ben BS, Belkin M, Cohen A: Tumor necrosis factor facilitates regeneration of injured central nervous system axons. Brain Res 545:334-338, 1991Google Scholar
  17. 17.
    Barger SW, Hörster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP: Tumor necrosis factors α and β protect neurons against amyloid β-peptide toxicity: Evidence for involvement of a κB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci USA 92:9328-9332, 1995Google Scholar
  18. 18.
    Gottfries C-G, Bråne G, Cullberg B, Steen G: A new rating scale for dementia syndromes. Arch Gerontol Geriatr 1:311-330, 1982Google Scholar
  19. 19.
    Roman GC, Tatemichi TK, Erkinjuntti T, et al.: Vascular dementia: Diagnostic criteria for research studies. Report of the NINDSARIEN International workshop. Neurology 43:250-260, 1993Google Scholar
  20. 20.
    Wallin A, Blennow K, Edman Å, Månsson JE: Decreased lumbar CSF levels of monoamine metabolites in vascular dementia. Int Psychogeriatr 8:425-436, 1996Google Scholar
  21. 21.
    Wallin A, Blennow K, Scheltens PH: Research criteria for clinical diagnosis of “pure” Alzheimers disease. Drugs Today 30:265-273, 1994Google Scholar
  22. 22.
    Landorp PM, Aarden LA, Calafat J, Zeijlemaker WP: A growth factor dependent B-cell hybridoma. Curr Top Microbiol Immunol 132:105-113, 1986Google Scholar
  23. 23.
    Aarden LA, de Groot ER, Shaap OL, Lansdorp PM: Production of hybridoma growth factor by human monocytes. Eur J Immunol 17:1411-1416, 1987Google Scholar
  24. 24.
    Helle M, Boeije L, Aarden LA: Functional discrimination between interleukin-6 and interleukin-1. Eur J Immunol 18:1535-1540, 1988Google Scholar
  25. 25.
    Tarkowski E, Rosengren L, Blomstrand C, Wikkelsö C, Jensen C, Ekholm S, Tarkowski A: Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke 26:1393-1398, 1995Google Scholar
  26. 26.
    Blennow K, Wallin A, Ågren H, Spencer C, Siegfried J, Vanmechelen E: Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer's disease? Mol Chem Neuropathol 26:231-245, 1995Google Scholar
  27. 27.
    Biedler JL, Helson L, Spengler BA: Morphology and growth, tumorigenecity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33:2643-2652, 1973Google Scholar
  28. 28.
    Blennow K, Wallin A, Gottfries CG: Presence of parieto-temporal symptomatology distinguishes early-and late-onset Alzheimer disease. Int J Geriatr 6:149-156, 1991Google Scholar
  29. 29.
    Lieberman AP, Pitha PM, Shin HS, Shin ML: Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotrop virus. Proc Natl Acad Sci USA 86:6348-6352, 1989Google Scholar
  30. 30.
    Righi M, Mori L, De Libero G, Sironi M, Biondi A, Mantovani AD, Domini S, Ricciardi-Castagnoli P: Monokine production by microglial cell clones. Eur J Immunol 19:1443-1448, 1989Google Scholar
  31. 31.
    McLaurin J, D'Souza S, Stewart J, Blain M, Beaudet A, Nalbantoglu J, Antel JP: Effect of tumor necrosis factor α and β on humans oligodendrocytes and neurons in culture. Int J Dev Neurosci 13:369-381, 1995Google Scholar
  32. 32.
    Tarkowski E, Rosengren L, Blomstrand C, Wikkelsö C, Jensen C, Ekholm S, Tarkowski A: Intrathecal release of pro-and antiinflammatory cytokines in stroke. Clin Exp Immunol 110:492-499, 1997Google Scholar
  33. 33.
    Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F: Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374:647-650, 1995Google Scholar
  34. 34.
    Itoh N, Nagata S: A novel protein domain required for apoptosis. J Biol Chem 268:10932-10937, 1993Google Scholar
  35. 35.
    Matsuyama T, Hata R, Yamamoto Y, Tagaya M, Akita H, Uno H, Wanaka A, Furuyama J, Sugita M: Localization of Fas antigen m-RNA induced in postischemic murine forebrain by the in situ hybridization. Mol Brain Res 34:166-172, 1995Google Scholar
  36. 36.
    Anderson AJ, Cummings BJ, Cotman CW: Increased immunoreactivity of jun-and fos-related proteins in Alzheimer's disease: Association with pathology. Exp Neurol 125:286-295, 1994Google Scholar
  37. 37.
    Anderson AJ, Su JH, Cotman CW: DNA damage and apoptosis in Alzheimer's disease: Colocalization with c-jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 16:1710-1719, 1996Google Scholar
  38. 38.
    Allsopp TE, Wyatt A, Paterson HF, Davies AM: The protooncogen bcl-2 can selectively recue neurotrophic-factor dependent neurons from apoptosis. Cell 73:295-307, 1993Google Scholar
  39. 39.
    Martinou J, Dubois-Dauphin M, Staple J, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C: Overexpression of bcl-2 in transgenic mice protects neurons from naturally occuring death and experimental ischemia. Neuron 13:1017-1030, 1994Google Scholar
  40. 40.
    Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A: Amyloid β peptide of Alzheimer's disease downregulates bcl-2 and uppregulates Bax expression in human neurons. J Neurosci 16:7533-7539, 1996Google Scholar
  41. 41.
    Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW: Apoptosis is induced by β-amyloid in cultured central nervous neurons. Proc Natl Acad Sci USA 90:7951-7755, 1993Google Scholar
  42. 42.
    Li Y-P, Bushnell AF, Lee C-M, Perlmutter LS, Wong SK-F: β-Amyloid induces apoptosis in human-derived neurotypic SH-SY 5Y cells. Brain Res 738:196-204, 1996Google Scholar
  43. 43.
    Jellinger KA: Diagnostic accuracy of Alzheimer's disease: A clinicopathological study. Acta Neuropathol 91:219-220, 1996Google Scholar
  44. 44.
    Kosunen O, Soininen H, Paljärvi L, Heinonen O, Talasniemi S, Riekkinen PJ Sr: Diagnostic accuracy of Alzheimer's disease: a neuropathological study. Acta Neuropathol 91:185-193, 1996Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Elisabeth Tarkowski
    • 1
  • Kaj Blennow
    • 2
  • Anders Wallin
    • 2
  • Andrzej Tarkowski
    • 1
  1. 1.Department of RheumatologyUniversity of Göteborg and Hospital of VarbergSweden
  2. 2.Department of Clinical Neurosciences (Section of Psychiatry and Neurochemistry)University of GöteborgSweden

Personalised recommendations