Studia Logica

, Volume 71, Issue 3, pp 315–329 | Cite as

A Tale of Four Grammars

  • Claudia Casadio
  • Joachim Lambek

Abstract

In this paper we consider the relations existing between four deductive systems that have been called “categorial grammars” and have relevant connections with linguistic investigations: the syntactic calculus, bilinear logic, compact bilinear logic and Curry's semantic calculus.

categorial grammar linear logic pregroup adjoint wh-questions 

References

  1. [Ab1]
    Abrusci, V. M. (1991), ‘Phase semantics and sequent calculus for pure Noncommutative Classical Linear Propositional Logic’, The Journal of Symbolic Logic 56,4, 1403-1451.Google Scholar
  2. [Ab2]
    Abrusci, V. M. (1995), ‘Noncommutative proof nets’ in Girard et al. (eds.), Advances in Linear Logic, Cambridge University Press, Cambridge, 271-296.Google Scholar
  3. [Ab3]
    Abrusci, V. M. (1996), ‘Lambek calculus, Cyclic Multiplicative-Additive Linear Logic, Noncommutative Multiplicative-Additive Linear Logic: language and sequent calculus’ in Proofs and Linguistic Categories: Proceedings 1996 Roma Workshop, Bologna, CLUEB, 21-48.Google Scholar
  4. [AM]
    Abrusci, V. M., and E. Maringelli (1998), ‘A new correctness criterion for cyclic proof nets’, Journal of Logic, Language and Information 7, 449-459.Google Scholar
  5. [AS]
    Ades, A. E., and M. J. Steedman (1982), ‘On the order of words’, Linguistics and Philosophy 4, 517-558.Google Scholar
  6. [Aj]
    Ajdukiewicz, K. (1935), ‘Die syntaktische Konnexität’, Studia Philosophica 1, 1-27; Eng. trans. 'syntactic connexion’, in S. McCall (ed.) (1967).Google Scholar
  7. [BH]
    Bar-Hillel, Y. (1953), ‘A quasi-arithmetical notation for syntactic description’, Language 29, 47-58.Google Scholar
  8. [Ba1]
    Barr, M. (1979), ‘*-Autonomous Categories’, Springer LNM 752, Berlin.Google Scholar
  9. [Ba2]
    Barr, M. (1996), ‘Autonomous categories, revisited’, Journal of Pure and Applied Algebra 111, 1-20.Google Scholar
  10. [Be]
    Benthem, J. van (1988), ‘The Lambek calculus’, in E. Bach, R. T. H. Oehrle, D. Wheeler (eds.), Categorial Grammars and Natural Language Structures, Reidel, Dordrecht, 35-68.Google Scholar
  11. [Bu1]
    Buszkowski, W. (1982), ‘Lambek's Categorial Grammars’, Institute of Mathematics, Adam Mickiewicz University, Poznań, Poland.Google Scholar
  12. [Bu2]
    Buszkowski, W. (1985), ‘The equivalence of unidirectional Lambek categorial grammars and context free grammars’, Zeitschr. f. math. Logik und Grund. der Math. 31, 308-384.Google Scholar
  13. [Bu3]
    Buszkowski, W. (1986), ‘Generative capacity of nonassociative Lambek calculus’, Bulletin of Polish Academy of Sciences (Mathematics) 34, 507-516.Google Scholar
  14. [BMB]
    Buszkowski, W., W. Marciszewski and J. van Benthem (eds.) (1990), Categorial Grammar, J. Benjamin, Amsterdam.Google Scholar
  15. [Ca1]
    Casadio, C. (1988), ‘Semantic categories and the development of categorial grammars’ in E. Bach, R. T. H. Oehrle, D. Wheeler (eds.), Categorial Grammars and Natural Language Structures, Reidel, Dordrecht, 95-123.Google Scholar
  16. [Ca2]
    Casadio, C. (1997), ‘Unbounded dependencies in Non-commutative Linear Logic’, in Proceedings of the Conference Formal Grammar, ESSLLI 1997, Aix en Provence.Google Scholar
  17. [Ca3]
    Casadio, C. (1999), ‘Minimalism and the logical structure of the lexicon’, in C. Retoré and E. Stabler (eds.), Resource Logics and Minimalist Grammar, ESSLLI99, Utrecht.Google Scholar
  18. [Ca4]
    Casadio, C. (2001), ‘Non-commutative linear logic in linguistics’, Grammars, 3/4, 1-19.Google Scholar
  19. [CL]
    Casadio, C, and J. Lambek (2001), ‘An algebraic analysis of clitic pronouns in Italian’, in P. de Groote, G. Morrill and C. Retoré, editors, Logical Aspects of Computational Linguistics, 110-124, Springer, Berlin, 2001.Google Scholar
  20. [Ch]
    Chomsky, N. (1995), The Minimalist Program, Cambridge, Mass., The MIT Press.Google Scholar
  21. [CS1]
    Cockett, J.R.B., and R. A. G. Seely (1997a), ‘Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories’, Theory and Applications of Categories 3, 85-131.Google Scholar
  22. [CS2]
    Cockett, J. R. B., and R. A. G. Seely (1997b), ‘Weakly distributive categories’, Journal of Pure and Applied Algebra 114, 133-173.Google Scholar
  23. [Cu]
    Curry, H. B. (1961), ‘Some logical aspects of grammatical structure’, in R. Jacobson (ed.), Structure of Language and its Mathematical Aspects, in AMS Proc. Symposia Applied Mathematics 12, 56-67.Google Scholar
  24. [DS]
    Došen, K., and P. Schroeder-Heister (eds.)(1993), Substructural Logics, Oxford University Press, Oxford.Google Scholar
  25. [EM]
    Eilenberg, S., and S. Mac Lane (1945), ‘General theory of natural equivalences’, Trans. Amer. Math. Soc. 58, 231-294.Google Scholar
  26. [Ge]
    Geach, P. T. (1972) ‘A program for syntax’, in D. Davidson and G. Harman (eds.)(1972), Semantics of Natural Language, Reidel, Dordrecht, 483-497.Google Scholar
  27. [Gi1]
    Girard, J. Y. (1987), ‘Linear logic’, Theoretical Computer Science, 50, 1-102.Google Scholar
  28. [Gi2]
    Girard, J. Y. (1995), ‘Linear logic: its syntax and semantics’, in Girard et al. (eds.) Advances in Linear Logic, Cambridge University Press, Cambridge.Google Scholar
  29. [Gr]
    Grishin, V. N., (1983), ‘On a generalization of the Ajdukiewicz-Lambek system’, Studies in Non-Commutative Logics and Formal Systems, Nauka, Moscow, 315-343.Google Scholar
  30. [Ha]
    Harris, Z. (1966), ‘A cycling cancellation-automaton for sentence well-formedness’, International Computation Centre Bulletin 5, 69-94.Google Scholar
  31. [Ja1]
    Jackendoff, R. (1977), X-bar Syntax: a study of phrase structure, Linguistic Inquiry Monograph 2, The MIT Press, Cambridge, Mass.Google Scholar
  32. [Ja2]
    Jackendoff, R. (1997), The Architecture of the Language Faculty, Linguistic Inquiry Monograph 28, The MIT Press, Cambridge, Mass.Google Scholar
  33. [Ka1]
    Kandulski, M. (1988), ‘The equivalence of nonassociative Lambek categorial grammars and context free grammars’, Zeitschr. f. math. Logik und Grund. der Math. 34, 41-52.Google Scholar
  34. [Ka2]
    Kandulski, M. (1999), ‘Strong equivalence of generalized Ajdukiewicz and Lambek grammars’, in A. Lecomte, F. Lamarche and G. Perrier (eds.), Logical Aspects of Computational Linguistics, Springer LNAI 1582, 54-69.Google Scholar
  35. [Ke]
    Kelly, G. M. (1972), ‘Many-variable functorial calculus I’, in S. Mac Lane (ed.), Coherence in Categories, Springer LNM 281.Google Scholar
  36. [LR]
    Lamarche, F., and C. Retoré (1996), ‘Proof nets for the Lambek calculus — an overview’, in V. M. Abrusci and C. Casadio (eds.), Proofs and Linguistic Categories: Proceedings 1996 Roma Workshop, CLUEB, Bologna, 241-262.Google Scholar
  37. [La1]
    Lambek, J. (1958), ‘The mathematics of sentence structure’, American Mathematical Monthly 65, 154-70.Google Scholar
  38. [La2]
    Lambek, J. (1993), ‘From categorial grammar to bilinear logic’, in Došen et al. (eds.), 207-237.Google Scholar
  39. [La3]
    Lambek, J. (1995a), ‘Cut elimination for classical bilinear logic’, Fundamenta Informaticae 22, 55-67.Google Scholar
  40. [La4]
    Lambek, J. (1995b), ‘Bilinear logic in algebra and linguistics’, in Girard et al. (eds.), Advances in Linear Logic, Cambridge, Cambridge University Press, 43-60.Google Scholar
  41. [La5]
    Lambek, J. (1999), ‘Type grammars revisited’, in A. Lecomte, F. Lamarche and G. Perrier (eds.), Logical Aspects of Computational Linguistics, Springer LNAI 1582, 1-27.Google Scholar
  42. [La6]
    Lambek, J. (2000), ‘Pregroups: a new algebraic approach to sentence structure’, in C. Martí n-Vide and G. Paun (eds.), Recent Topics in Mathematical and Computational Linguistics, Editura Academici Române, Bucharest.Google Scholar
  43. [La7]
    Lambek, J. (2001), ‘Type grammars as pregroups’, Grammars 4, 21-39.Google Scholar
  44. [LeR]
    Lecomte, A. and C. Retoré (1995), ‘Pomset logic as an alternative to categorial grammar’, in Proceedings of the Conference on “Formal Grammar”, ESSLLI 1995, Barcelona.Google Scholar
  45. [MC]
    McCall, S. (ed.) (1967), Polish Logic, Clarendon Press, Oxford.Google Scholar
  46. [Mo1]
    Moortgat, M. (1988), Categorial Investigations. Logical and linguistic aspects of the Lambek calculus, Foris, Dordrecht.Google Scholar
  47. [Mo2]
    Moortgat, M. (1997), ‘Categorial Type Logics’, in J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier, Amsterdam, 93-177.Google Scholar
  48. [Mor1]
    Morrill, G. (1994), Type Logical Grammar, Kluwer, Dordrecht.Google Scholar
  49. [Mor2]
    Morrill, G. (1998), ‘Incremental processing and acceptability’, Report de recerca, Universitat Politecnica de Catalunia.Google Scholar
  50. [Pe1]
    Pentus, M. (1993), ‘Lambek grammars are context free’, Proceedings 8th LICS Conference, 429-433.Google Scholar
  51. [Pe2]
    Pentus, M. (1997), ‘Product-free Lambek calculus and context-free grammars’, Journal of Symbolic Logic 62, 648-660.Google Scholar
  52. [Re]
    Retoré, C. (ed.) (1997), Logical Aspects of Computational Linguistics, First International Conference LACL '96, Lectures Notes in Artificial Intelligence, Springer, Berlin.Google Scholar
  53. [Ro]
    Roorda, D. (1991), Resource Logics: proofs theoretical investigations, Ph.D. dissertation, Univ. van Amsterdam.Google Scholar
  54. [Ye]
    Yetter, D. N. (1990), ‘Quantales and (non-commutative) linear logic’, Journal of Symbolic Logic 55, 41-64.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Claudia Casadio
    • 1
  • Joachim Lambek
    • 2
  1. 1.Dipartimento di FilosofiaUniversità di BolognaBolognaItaly
  2. 2.Dept. of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations