Journal of Clinical Immunology

, Volume 19, Issue 4, pp 203–214 | Cite as

New Insights into the Biology of the Acute Phase Response

  • Anthony F. Suffredini
  • Giamila Fantuzzi
  • Raffaele Badolato
  • Joost J. Oppenheim
  • Naomi P. O'Grady


Innate or natural immunity is a highly conserved defense mechanism against infection found in all multicellular organisms. The acute phase response is the set of immediate inflammatory responses initiated by pattern recognition molecules. These germ cell-encoded proteins recognize microbial pathogens based on shared molecular structures and induce host responses that localize the spread of infection and enhance systemic resistance to infection. Innate immunity also influences the initiation and type of adaptive immune response by regulating T cell costimulatory activity and antigen presentation by antigen presenting cells and by influencing mediator production, which affects lymphocyte function and trafficking. Acute phase protein concentrations rapidly increase after infection, and their production is controlled primarily by IL-6- and IL-1-type cytokines. The acute phase proteins provide enhanced protection against microorganisms and modify inflammatory responses by effects on cell trafficking and mediator release. For example, serum amyloid A has potent leukocyte activating functions including induction of chemotaxis, enhancement of leukocyte adhesion to endothelial cells, and increased phagocytosis. The constellation of inflammatory responses seen after endotoxin administration to humans represents an in vivo model of the acute phase response. Studies with inflammatory modifying agents, such as soluble dimeric TNF receptor and IL-10, show that these responses are not dependent on a single mediator but result from multiple overlapping inflammatory pathways. Understanding the factors that initiate and alter the magnitude and duration of the acute phase response represents an important step in the development of new therapies for infectious and inflammatory diseases.

Acute phase response acute phase proteins serum amyloid A human endotoxemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumann H, Gauldie J: The acute phase response. Immunol Today 15:74-80, 1994Google Scholar
  2. 2.
    Medzhitov R, Janeway CA, Jr: Innate immunity: Impact on the adaptive immune response. Curr Opin Immunol 9:4-9, 1997Google Scholar
  3. 3.
    Fearon DT, Locksley RM: The instructive role of innate immunity in the acquired immune response. Science 272:50-53, 1996Google Scholar
  4. 4.
    Ulevitch RJ, Tobias PS: Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13:437-457, 1995Google Scholar
  5. 5.
    Pugin J, Heumann ID, Tomasz A, et al.: CD14 is a pattern recognition receptor. Immunity 1:509-516, 1994Google Scholar
  6. 6.
    Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-397, 1997Google Scholar
  7. 7.
    Yang RB, Mark MR, Gray A, et al.: Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284-288, 1998Google Scholar
  8. 8.
    Tilg H, Dinarello CA, Mier JW: IL-6 and APPs: Anti-inflammatory and immunosuppressive mediators. Immunol Today 18:428-432, 1997Google Scholar
  9. 9.
    Alcorn JM, Fierer J, Chojkier M: The acute-phase response protects mice from D-galactosamine sensitization to endotoxin and tumor necrosis factor-alpha. Hepatology 15:122-129, 1992Google Scholar
  10. 10.
    Heuertz RM, Xia D, Samols D, Webster RO: Inhibition of C5a des Arg-induced neutrophil alveolitis in transgenic mice expression C-reactive protein. Am J Physiol 266:L649-L654, 1994Google Scholar
  11. 11.
    Benigni F, Fantuzzi G, Sacco S, et al.: Six different cytokines that share GP130 as a receptor subunit, induce serum amyloid A and potentiate the induction of interleukin-6 and the activation of the hypothalamus-pituitary-adrenal axis by interleukin-1. Blood 87:1851-1854, 1996Google Scholar
  12. 12.
    Kopf M, Baumann H, Freer G, et al.: Impaired immune and acute-phase response in interleukin-6-deficient mice. Nature 368:339-342, 1994Google Scholar
  13. 13.
    Yoshida K, Taga T, Saito M, et al.: Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA 93:407-411, 1996Google Scholar
  14. 14.
    Taga T: GP130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797-819, 1997Google Scholar
  15. 15.
    Zheng H, Fletcher D, Kozak W, et al.: Resistance to fever induction and impaired acute-phase response in interleukin-1 beta-deficient mice. Immunity 3:9-19, 1995Google Scholar
  16. 16.
    Fantuzzi G, Dinarello CA: The inflammatory response in interleukin-1β-deficient mice: Comparison with other cytokine-related knock-out mice. J Leukocyte Biol 59:489-493, 1996Google Scholar
  17. 17.
    Fattori E, Cappelletti M, Costa P, et al.: Defective inflammatory response in interleukin 6-deficient mice. J Exp Med 180:1243-1250, 1994Google Scholar
  18. 18.
    Kozak W, Zheng H, Conn CA, Soszynski D, van der Ploeg LH, Kluger MJ: Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1 beta-deficient mice. Am J Physiol 269:R969-R977, 1995Google Scholar
  19. 19.
    Fantuzzi G, Ku G, Harding MW, et al.: Response to local inflammation of IL-1 beta-converting enzyme-deficient mice. J Immunol 158:1818-1824, 1997Google Scholar
  20. 20.
    Leon LR, Conn CA, Glaccum M, Kluger MJ: IL-1 type I receptor mediates acute phase response to turpentine, but not lipopolysaccharide, in mice. Am J Physiol 271:R1668-R1675, 1996Google Scholar
  21. 21.
    Leon LR, Kozak W, Peschon J, Kluger MJ: Exacerbated febrile responses to LPS, but not turpentine, in TNF double receptor-knockout mice. Am J Physiol 272:R563-R569, 1997Google Scholar
  22. 22.
    Fantuzzi G, Zheng H, Faggioni R, et al.: Effect of endotoxin in IL-1 beta-deficient mice. J Immunol 157:291-296, 1996Google Scholar
  23. 23.
    Shornick LP, De Togni P, Mariathasan S, et al.: Mice deficient in IL-1beta manifest impaired contact hypersensitivity to trinitrochlorobenzone. J Exp Med 183:1427-1436, 1996Google Scholar
  24. 24.
    Rothe J, Lesslauer W, Lotscher H, et al.: Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364:798-802, 1993Google Scholar
  25. 25.
    Car BD, Eng VM, Schnyder B, et al.: Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med 179:1437-1444, 1994Google Scholar
  26. 26.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue [see comments]. Nature 372:425-432, 1994 [Erratum appears in Nature 374(6521):479, 1995]Google Scholar
  27. 27.
    Grunfeld C, Zhao C, Fuller J, et al.: Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest 97:2152-2157, 1996Google Scholar
  28. 28.
    Sarraf P, Frederich RC, Turner EM, et al.: Multiple cytokines and acute inflammation raise mouse leptin levels: Potential role in inflammatory anorexia. J Exp Med 185:171-175, 1997Google Scholar
  29. 29.
    Tartaglia LA, Dembski M, Weng X, et al.: Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263-1271, 1995Google Scholar
  30. 30.
    Faggioni R, Fantuzzi G, Fuller J, Dinarello CA, Feingold KR, Grunfeld C: IL-1 beta mediates leptin induction during inflammation. Am J Physiol 274:R204-R208, 1998Google Scholar
  31. 31.
    Faggioni R, Fuller J, Moser A, Feingold KR, Grunfeld C: LPS-induced anorexia in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice. Am J Physiol 273:R181-R186, 1997Google Scholar
  32. 32.
    Faggioni R, Fantuzzi G, Gabay C, et al.: Leptin deficiency enhances sensitivity to endotoxin-induced lethality. Am J Physiol 276:R136-R142, 1999Google Scholar
  33. 33.
    Takahashi N, Waelput W, Guisez Y: Leptin is an endogenous protective protein against the toxicity exerted by tumor necrosis factor. J Exp Med 189:207-212, 1999Google Scholar
  34. 34.
    Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM: Obesity increases sensitivity to endotoxin liver injury: Implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA 94:2557-2562, 1997Google Scholar
  35. 35.
    Dong ZM, Gutierrez-Ramos JC, Coxon A, Mayadas TN, Wagner DD: A new class of obesity genes encodes leukocyte adhesion receptors. Proc Natl Acad Sci USA 94:7526-7530, 1997Google Scholar
  36. 36.
    Steel DM, Whitehead AS: The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today 15:81-88, 1994Google Scholar
  37. 37.
    Sipe J: The acute-phase response. In Immunophysiology: The Role of Cells and Cytokines in Immunity and Inflammation, JJ Oppenheim, EM Shevach (eds). New York, Oxford University Press, 1990, pp 259-273Google Scholar
  38. 38.
    Beach CM, De Beer MC, Sipe JD, Loose LD, De Beer FC: Human serum amyloid A protein. Complete amino acid sequence of a new variant. Biochem J 282:615-620, 1992Google Scholar
  39. 39.
    Watson G, Coade S, Woo P: Analysis of the genomic and derived protein structure of a novel human serum amyloid A gene, SAA4. Scand J Immunol 36:703-712, 1992Google Scholar
  40. 40.
    Bausserman LL, Herbert PN, McAdam KP: Heterogeneity of human serum amyloid A proteins. J Exp Med 152:641-656, 1980Google Scholar
  41. 41.
    Hoffman JS, Benditt EP: Secretion of serum amyloid protein and assembly of serum amyloid protein-rich high density lipoprotein in primary mouse hepatocyte culture. J Biol Chem 257:10518-10522, 1982Google Scholar
  42. 42.
    Husebekk A, Skogen B, Husby G: Characterization of amyloid proteins AA and SAA as apolipoproteins of high density lipoprotein (HDL). Displacement of SAA from the HDL-SAA complex by apo AI and apo AII. Scand J Immunol 25:375-381, 1987Google Scholar
  43. 43.
    Stone MJ: Amyloidosis: A final common pathway for protein deposition in tissues. Blood 75:531-545, 1990Google Scholar
  44. 44.
    Meek RL, Eriksen N, Benditt EP: Murine serum amyloid A3 is a high density apolipoprotein and is secreted by macrophages. Proc Natl Acad Sci USA 89:7949-7952, 1992Google Scholar
  45. 45.
    Liang JS, Sipe JD: Recombinant human serum amyloid A (apoSAAp) binds cholesterol and modulates cholesterol flux. J Lipid Res 36:37-46, 1995Google Scholar
  46. 46.
    Badolato R, Wang JM, Murphy WJ, et al.: Serum amyloid A is a chemoattractant: Induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med 180:203-209, 1994Google Scholar
  47. 47.
    Xu L, Badolato R, Murphy WJ, et al.: A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol 155:1184-1190, 1995Google Scholar
  48. 48.
    Musso T, Bresciani S, Ponzi AN, Wang J, Turano A, Badolato R: Serum amyloid A enhances PMN-mediated anti-Candida activity and stimulates the production of anion superoxide. J Leukocyte Biol 194:194, 1996 (abstract)Google Scholar
  49. 49.
    Bausserman LL, Herbert PN, Rodger R, Nicolosi RJ: Rapid clearance of serum amyloid A from high-density lipoproteins. Biochim Biophys Acta 792:186-191, 1984Google Scholar
  50. 50.
    Lavie G, Zucker-Franklin D, Franklin EC: Elastase-type proteases on the surface of human blood monocytes: Possible role in amyloid formation. J Immunol 125:175-180, 1980Google Scholar
  51. 51.
    Preciado-Patt L, Hershkoviz R, Fridkin M, Lider O: Serum amyloid A binds specific extracellular matrix glycoproteins and induces the adhesion of resting CD4+ T cells. J Immunol 156:1189-1195, 1996Google Scholar
  52. 52.
    Badolato R, Johnston JA, Wang JM, et al.: Serum amyloid A induces calcium mobilization and chemotaxis of human monocytes by activating a pertussis toxin-sensitive signaling pathway. J Immunol 155:4004-4010, 1995Google Scholar
  53. 53.
    Su SB, Gong W, Gao JL, et al.: A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med 189:395-402, 1999Google Scholar
  54. 54.
    Rutledge BJ, Rayburn H, Rosenberg R, et al.: High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J Immunol 155:4838-4843, 1995Google Scholar
  55. 55.
    Linke RP, Bock V, Valet G, Rothe G: Inhibition of the oxidative burst response of N-formyl peptide-stimulated neutrophils by serum amyloid-A protein. Biochem Biophys Res Commun 176:1100-1105, 1991Google Scholar
  56. 56.
    Suffredini AF, O'Grady NP: Pathophysiologic responses to endotoxin in humans. In Endotoxin in Health and Disease, 1st ed, H Braude, DC Morrison, SM Opal, SN Vogel (eds). New York, Marcel Dekker, 1999Google Scholar
  57. 57.
    Pajkrt D, Van der Poll T, Levi M, et al.: Interleukin-10 inhibits activation of coagulation and fibrinolysis during human endotoxemia. Blood 89:2701-2705, 1997Google Scholar
  58. 58.
    Kuhns DB, Alvord WG, Gallin JI: Increased circulating cytokines, cytokine antagonists, and E-selectin after intravenous administration of endotoxin in humans. J Infect Dis 171:145-152, 1995Google Scholar
  59. 59.
    Van der Poll T, Calvano SE, Kumar A, et al.: Endotoxin induces downregulation of tumor necrosis factor receptors on circulating monocytes and granulocytes in humans. Blood 86:2754-2759, 1995Google Scholar
  60. 60.
    Suffredini AF, Harpel PC, Parrillo JE: The promotion and subsequent inhibition of plasminogen following the intravenous endotoxin administration to normal humans. N Engl J Med 320:1165, 1989Google Scholar
  61. 61.
    Suffredini AF, Reda D, Banks SM, Tropea M, Agosti JM, Miller R: Effects of recombinant dimeric TNF receptor on human inflammatory responses following intravenous endotoxin administration. J Immunol 155:5038-5045, 1995Google Scholar
  62. 62.
    Van Deventer SJH, Buller HR, Ten Cate JW, Aarden LA, Hack CE, Sturk A: Experimental endotoxemia in humans: Analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76:2520-2526, 1990Google Scholar
  63. 63.
    DeLa Cadena RA, Suffredini AF, Page JD, Kaufman N, Parrillo JE, Colman RW: Activation of the kallikrein-kinin system after endotoxin administration to normal human volunteers. Blood 81:3313-3317, 1993Google Scholar
  64. 64.
    Michie HR, Manogue KR, Spriggs DR, et al.: Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481-1486, 1988Google Scholar
  65. 65.
    Preas HL, Reda D, Tropea M, et al.: Effects of recombinant soluble type I IL-1 receptor on human inflammatory responses to endotoxin. Blood 88:2465-2472, 1996Google Scholar
  66. 66.
    Granowitz E. V., Santos AA, Poutsiaka DD, et al.: Production of interleukin-1 receptor antagonist during experimental endotoxaemia. Lancet 338:1423-1424, 1991Google Scholar
  67. 67.
    Fong Y, Moldawer LL, Marano M, et al.: Endotoxemia elicits increased circulating beta 2-IFN/IL-6 in man. J Immunol 142:2321-2324, 1989Google Scholar
  68. 68.
    Martich GD, Danner RL, Ceska M, Suffredini AF: Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: The effect of antiinflammatory agents. J Exp Med 173:1021-1024, 1991Google Scholar
  69. 69.
    Elin RJ, Wolff SM, McAdam KPWJ, et al.: Properties of reference Escherichia coli endotoxin and its phthalylated derivative in humans. J Infect Dis 144:329-336, 1981Google Scholar
  70. 70.
    Revhaug A, Michie HR, Manson JM, et al.: Inhibition of cyclooxygenase attenuates the metabolic response to endotoxin in humans. Arch Surg 123:162-170, 1988Google Scholar
  71. 71.
    Suffredini AF, Fromm RE, Parker MM, et al.: The cardiovascular response of normal humans to the administration of endotoxin N Engl J Med 321:280-287, 1989Google Scholar
  72. 72.
    Suffredini AF, Shelhamer JH, Neumann RD, Brenner M, Baltaro RJ, Parrillo JE: Pulmonary and oxygen transport effects of intravenously administered endotoxin in normal humans. Am Rev Respir Dis 145:1398-1403, 1992Google Scholar
  73. 73.
    Boujoukos AJ, Martich GD, Supinski E, Suffredini AF: Compartmentalization of the acute cytokine response in humans after intravenous endotoxin administration. J Appl Physiol 74:3027-3033, 1993Google Scholar
  74. 74.
    Fong Y, Marano MA, Moldawer LL, et al.: The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest 85:1896-1904, 1990Google Scholar
  75. 75.
    Preas HL, Tropea M, Reda D, et al.: Bronchial instillation of endotoxin in normal humans results in local and systemic inflammatory responses. Am J Resp Crit Care Med 153:A442, 1995Google Scholar
  76. 76.
    Clapp WD, Becker S, Quay J, et al.: Grain dust-induced airflow obstruction and inflammation of the lower respiratory tract. Am J Respir Crit Care Med 150:611-617, 1994Google Scholar
  77. 77.
    von der Mohlen MA, Kimmings AN, Wedel NI, et al.: Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability-increasing protein. J Infect Dis 172:144-151, 1995Google Scholar
  78. 78.
    Bunnell E, Lynn M, Parrillo JE, Habet K, Friedhoff LT, Rogers SL: Effect of E5531 on systemic responses to endotoxin in healthy volunteers. Crit Care Med 23(Suppl):A147, 1995Google Scholar
  79. 79.
    Pajkrt D, Doran JE, Koster F, et al.: Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med 184:1601-1608, 1996Google Scholar
  80. 80.
    Barber AE, Coyle SM, Marano MA, et al.: Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J Immunol 150:1999-2006, 1993Google Scholar
  81. 81.
    Van der Poll T, Coyle SM, Barbosa K, Brabosa K, Braxton CC, Lowry SF: Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J Clin Invest 97:713-719, 1996Google Scholar
  82. 82.
    Granowitz EV, Porat R, Mier JW, et al.: Hematologic and immunomodulatory effects of an interleukin-l receptor antagonist coinfusion during low-dose endotoxemia in healthy humans. Blood 82:2985-2990, 1993Google Scholar
  83. 83.
    Van der Poll T, Coyle SM, Levi M, et al.: Effect of a recombinant dimeric tumor necrosis factor receptor on inflammatory responses to intravenous endotoxin in normal humans. Blood 89:3727-3734, 1997Google Scholar
  84. 84.
    DeLa Cadena RA, Majluf-Cruz A, Stadnicki A, et al.: Recombinant tumor necrosis factor receptor (TNFR:Fc) alters endotoxin-induced activation of the kinin, fibrinolytic, and coagulation systems in normal human subjects. Thromb Haemost 80:114-118, 1997Google Scholar
  85. 85.
    Pajkrt D, Camoglio L, Tiel-van Buul MCM, et al.: Attenuation of proinflammatory response by recombinant human IL-10 in human endotoxemia. J Immunol 158:3971-3977, 1997Google Scholar
  86. 86.
    Pollmacher T, Korth C, Mullington J, et al.: Effects of granulocyte colony-stimulating factor on plasma cytokine and cytokine receptor levels and on the in vivo host response to endotoxin in healthy men. Blood 87:900-905, 1996Google Scholar
  87. 87.
    Pajkrt D, Manten A, Van der Poll T, et al.: Modulation of cytokine release and neutrophil function by granulocyte colony-stimulating factor during endotoxemia in humans. Blood 90:1415-1424, 1997Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Anthony F. Suffredini
    • 1
    • 1
  • Giamila Fantuzzi
    • 2
  • Raffaele Badolato
    • 3
  • Joost J. Oppenheim
    • 4
  • Naomi P. O'Grady
    • 1
  1. 1.Critical Care Medicine Department, Warren G. Magnuson Clinical CenterNational Institutes of HealthBethesda
  2. 2.Division of Infectious DiseasesUniversity of Colorado Health Sciences CenterDenver
  3. 3.Department of PediatricsUniversity of BresciaBresciaItaly
  4. 4.Laboratory of Molecular ImmunoregulationNational Cancer Institute, Frederick Cancer Research and Development CenterFrederick

Personalised recommendations