Studia Logica

, Volume 71, Issue 3, pp 277–314 | Cite as

Classical Conservative Extensions of Lambek Calculus

  • V. Michele Abrusci

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abrusci, V. M., ‘A comparison between Lambek Syntactic Calculus and Intuitionistic Linear Propositional Logic’, Zeitschrift f. math. Logik und Grundlagen d. Math. 36 (1990), 11-15.Google Scholar
  2. [2]
    Abrusci, V. M., ‘Non-commutative Intuitionistic Linear Logic’, Zeitschrift f. math. Logik und Grundlagen d. Math. 36 (1990), 297-318.Google Scholar
  3. [3]
    Abrusci, V. M., ‘Sequent calculus and phase semantics for pure noncommutative classical propositional logic’, Journal of Symbolic Logic, 56 (1991).Google Scholar
  4. [4]
    Abrusci, V. M., ‘Considerazioni sulle leggi della (doppia) negazione nella logica lineare non-commutativa’, in Logica e Filosofia della Scienza: problemi e prospettive, Cellucci, Di Maio, Roncaglia (eds.), ETS, Pisa, 1994, pp. 619-628Google Scholar
  5. [5]
    Abrusci, V. M., ‘Lambek Calculus, Cyclic Multiplicative-Additive Linear Logic, Noncommutative Multiplicative-Additive Linear Logic: language and sequent calculus'.Google Scholar
  6. [6]
    Abrusci, V. M., and P. Ruet, ‘Non-commutative logic, I: the multiplicative fragment’, Annals of Pure and Applied Logic 101 (2000), 29-64.Google Scholar
  7. [7]
    Girard, J.-Y., ‘Linear Logic’, Theor. Comput. Sci., 50 (1987), 1-102.Google Scholar
  8. [8]
    Lamarche, F., ‘Games semantics for full propositional linear logic’, LICS'95, 464-473Google Scholar
  9. [9]
    Lambek, J., ‘The mathematics of sentence structure’, American Math. Monthly, 65 (1958), 154-169.Google Scholar
  10. [10]
    Lambek, J., ‘Bilinear Logic in algebra and linguistics’, in Advances in Linear Logic, Girard, Lafont, Regnier (eds.), LMSLNS 222, Cambridge University press, 1995.Google Scholar
  11. [11]
    Ruet, P., ‘Non-commutative Logic, II: sequent calculus and phase semantics’, Math. Struct. in Comp. Sciences, 10 (2000), 277-312.Google Scholar
  12. [12]
    Yetter, D.N., ‘Quantales and non-commutative linear logic’, Journal of Symbolic Logic 55 (1990), 41-64Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • V. Michele Abrusci
    • 1
  1. 1.Dipartimento di FilosofiaUniversità Roma TreRomaItaly

Personalised recommendations