Advertisement

Catalysis Letters

, Volume 82, Issue 3–4, pp 169–173 | Cite as

Quantum Size Effects in Catalysis by TiO2/Platinum: The Switch from Partial Oxidation to Partial Hydrogenation of Styrene

  • E. Charles H. Sykes
  • Mintcho S. Tikhov
  • Richard M. Lambert
Article

Abstract

Within a restricted range of metal loadings, the presence of small Pt particles on a hydroxylated fully oxidized TiO2 surface leads to the appearance of unusual chemical behavior. The chemisorption strength of styrene is markedly increased and the partial oxidation activity intrinsic to the hydroxylated titania is replaced by partial hydrogenation activity: styrene is converted to ethylbenzene instead of acetophenone. UPS and X-ray photoelectron spectroscopy data indicate that in this regime of platinum loading the Pt particles are subject to the so-called quantum size effect (QSE) and must therefore be of nanoscopic dimensions. The appearance of hydrogenation activity in the presence of these very small platinum particles may be rationalized in terms of a QSE/bifunctional catalysis mechanism involving water dissociation on the Pt followed by Ha spill-over over at the Pt/titania boundary where captured, strongly bound, styrene molecules undergo hydrogenation.

titania particles platinum nanoscopic quantum size effect XPS UPS styrene partial hydrogenation partial oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.C.H. Sykes, M.S. Tikhov and R.M. Lambert, Catal. Lett. (2001) (submitted).Google Scholar
  2. [2]
    U. Heiz, A. Sanchez, S. Abbet and W.-D. Schneider, J. Am. Chem. Soc. 121 (1999) 3214.Google Scholar
  3. [3]
    U. Achatz, C. Berg, S. Joos, B.S. Fox, M.K. Beyer, G. Niedner-Schatteburg and V.E. Bondybey, Chem.l Phys. Lett. 320 (2000) 53.Google Scholar
  4. [4]
    H. Steinruck, F. Pesty, L. Zhang and T.E. Madey, Phys. Rev. B 51 (1995) 2427.Google Scholar
  5. [5]
    F. Pesty, H. Steinruck and T.E. Madey, Surf. Sci. 339 (1995) 83.Google Scholar
  6. [6]
    S. Fischer, K.-D. Schierbaum and W. Gopel, Sensors and Actuators B31 (1996) 13.Google Scholar
  7. [7]
    S. Fischer, K.-D. Schierbaum and W. Gopel, Vacuum 48 (1997) 601.Google Scholar
  8. [8]
    K.-D. Schierbaum, S. Fischer, M.C. Torquemada, J.L. de Segovia, E. Roman and J.A. Martin-Gago, Surf. Sci. 345 (1996) 261.Google Scholar
  9. [9]
    K.-D. Schierbaum, S. Fischer, P. Wincott, P. Hardman, V. Dhanak, G. Jones and G. Thornton, Surf. Sci. 391 (1997) 196.Google Scholar
  10. [10]
    S. Gan, Y. Liang, D.R. Baer and A.W. Grant, Surf. Sci. 475 (2001) 159.Google Scholar
  11. [11]
    E.C.H. Sykes, M.S. Tikhov and R.M. Lambert, J. Phys. Chem. B (2001) (submitted).Google Scholar
  12. [12]
    E.C.H. Sykes, F.J. Williams, M.S. Tikhov and R.M. Lambert, J. Phys. Chem. B (2001) (submitted).Google Scholar
  13. [13]
    NIST, http://webbook.nist.gov/.Google Scholar
  14. [14]
    M. Peuckert and H.P. Bonzel, Surf. Sci. 145 (1984) 239.Google Scholar
  15. [15]
    K. Jacobi, K. Bedurftig, Y. Wang and G. Ertl, Surf. Sci. 472 (2001) 9.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • E. Charles H. Sykes
    • 1
  • Mintcho S. Tikhov
    • 1
  • Richard M. Lambert
    • 1
  1. 1.Chemistry DepartmentCambridge UniversityCambridgeUK

Personalised recommendations