Antonie van Leeuwenhoek

, Volume 81, Issue 1–4, pp 327–341 | Cite as

The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists

  • Thomas Weisse


This paper reviews the emerging evidence on the significance of inter- and intraspecific variation in the feeding behaviour of aquatic protists. Small heterotrophic nanoflagellates (HNF) have been identified as the primary bacterial consumers in most aquatic environments. Recent research using novel techniques such as flow cytometry and high resolution video microscopy revealed that their feeding strategies and grazing rates are diverse. There is an important conceptual difference between uptake rates measured in short-term (min to h) experiments and grazing rates averaged over a longer-term (d). This is because the latter are strongly affected by digestion rates which are species-specific, i.e. the same bacterial prey may be digested differently by various grazers, and the same predator may selectively digest variable prey. Planktonic ciliates are the most important algal consumers in many lakes and marine systems. Large species-specific differences in their feeding behaviour and growth rates have been documented for closely related species. Intraspecific variation, which is, most likely, caused by varying clonal composition may be as important as interspecific variation. Finally, there is some evidence that the individual variability within a given population is generally large, both among bacterivorous HNF and among herbivorous ciliates. The consequences of this diversity becoming apparent at the levels of the species, population, clone and individual need to be considered by aquatic ecologists in their conceptual models.

ciliates clonal difference flagellates grazing growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt H (1993) A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (helizoa) in lake plankton. Mar. Microb. Food Webs 7: 3–29.Google Scholar
  2. Arndt H & Berninger U-G (1995) Protists in aquatic food webs - complex interactions. In: Brugerolle G & Mignot J-P (Eds) Protistological Actualities (Proceedings of the Second European Congress of Protistology, 1995) (pp 224-232). Clermont-Ferrand.Google Scholar
  3. Arndt H, Dietrich D, Auer B, Cleven E-J, Gräfenhan T, Weitere M & Mylnikov AP (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC & Green JC (Eds) The Flagellates (pp 240–268). Taylor & Francis, London.Google Scholar
  4. Assmann D (1998) Nahrungsselektion und Nahrungsverwertung chroococcaler Cyanobakterien durch heterotrophe Nanoflagellaten. PhD Thesis, University of Konstanz, 163 pp.Google Scholar
  5. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA & Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  6. Beaver JR & Crisman TL (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17: 111–136.Google Scholar
  7. Bernard C & Rassoulzadegan F (1990) Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton. Mar. Ecol. Prog. Ser. 64: 147–155.Google Scholar
  8. Boenigk J & Arndt H (2000a) Comparative studies on the feeding behaviour of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aquat. Microb. Ecol. 22: 243–249.Google Scholar
  9. Boenigk J & Arndt H (2000b) Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J. Eukaryot. Microbiol. 47: 350–358.PubMedGoogle Scholar
  10. Boenigk J, Arndt H & Cleven E-J (2001a) The problematic nature of fluorescently labeled bacteria (FLB) in Spumella feeding experiments - an explanation by using video microscopy. Arch. Hydrobiol. 152: 329–338.Google Scholar
  11. Boenigk J, Matz C, Jürgens K & Arndt H (2001b) Confusing selective feeding with differential digestion and bacterivorous nanoflagellates. J. Euk. Microb. 48: 425–432.Google Scholar
  12. Boenigk J, Matz C, Jürgens K & Arndt H (2001c) The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb. Ecol. 42: 168–176.PubMedGoogle Scholar
  13. Børsheim KY (1984) Clearance rates of bacteria-sized particles by freshwater ciliates, measured with monodisperse fluorescent latex beads. Oecologia 63: 286–288.Google Scholar
  14. Bratvold D, Srienc F & Taub SR (2000) Analysis of the distribution of ingested bacteria in nanoflagellates and estimation of grazing rates with flow cytometry. Aquat. Microb. Ecol. 21: 1–12.Google Scholar
  15. Bruchmüller I (1998) Molekularbiologische Charakterisierung und phylogenetische Einordnung heterotropher Nanoflagellaten und prostomatider Ciliaten des Süßwassers. PhD Thesis, Mathematisch-Naturwiss. Fakultät. University of Kiel, 196 pp.Google Scholar
  16. Caron DA (2000) Symbiosis and mixotrophy among pelagic microorganisms. In Kirchman DL (Ed) Microbial Ecology of the Oceans (pp 495–523). Wiley-Liss, New York.Google Scholar
  17. Caron DA & Dennett MR (1986) Effects of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Appl. Enrivon. Microb. 52: 1340–1347.Google Scholar
  18. Caron DA, Goldman JC, Andersen OK & Dennett MR (1985) Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Prog. Ser. 24: 243–254.Google Scholar
  19. Caron DA & Swanberg NR (1990) The ecology of planktonic sarcodines. Rev. Aquat. Sci. 3: 147–180.Google Scholar
  20. Carrias J-F, Amblard C & Bourdier G (1996) Protistan bacterivory in an oligomesotrophic lake: importance of attached ciliates and flagellates. Microb. Ecol. 31: 249–268.PubMedGoogle Scholar
  21. Cho BC, Na SC & Choi DH (2000) Active ingestion of fluorescently labeled bacteria by mesopelagic heterotrophic nanoflagellates in the East Sea, Korea. Mar. Ecol. Prog. Ser. 206: 23–32.Google Scholar
  22. Chrzanowski TH & Šimek K (1990) Prey-size selection by freshwater flagellated protozoa. Limnol. Oceanogr. 35: 1429–1436.Google Scholar
  23. Cleven E-J & Weisse T (2001) Seasonal succession and taxonspecific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat. Microb. Ecol. 23: 147–161.Google Scholar
  24. Cucci TL, Shumway SE, Brown WS & Newell CR (1989) Using phytoplankton and flow cytometry to analyze grazing by marine organisms. Cytometry 10: 659–669.PubMedGoogle Scholar
  25. Cucci TL, Shumway SE, Newell RC, Selvin R, Guillard RRL & Yentsch CM (1985) Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar. Ecol. Prog. Ser. 24: 201–204.Google Scholar
  26. Davey HM & Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of singlecell analysis. Microbiol. Rev. 60: 641–696.PubMedGoogle Scholar
  27. DeMott WR (1989) The role of competition in zooplankton succession. In: Sommer U (Ed) Plankton Ecology: Sucession in Plankton Communities (pp 195–252). Brock/Springer, Berlin.Google Scholar
  28. Dolan JF & Gallegos CL (1991) Trophic coupling between rotifers, microflagellates, and bacteria during fall months in the Rhode River Estuary. Mar. Ecol. Prog. Ser. 77: 147–156.Google Scholar
  29. Dolan JR & Šimek K (1997) Processing of ingested matter in Strombidium sulcatum, a marine ciliate. Limnol. Oceanogr. 42: 393–397.Google Scholar
  30. Ducklow HW (1991) The passage of carbon through microbial foodwebs: results from flow network models. Mar. Microb. Food Webs 5: 129–144.Google Scholar
  31. Edwards ES, Burkill PH & Stelfox CE (1999) Zooplankton herbivory in the Arabian Sea during and after the SW monsoon, 1994. Deep-Sea Res. II 46: 843–863.Google Scholar
  32. Fenchel T (1982) Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.Google Scholar
  33. Fenchel T (1987) Ecology of protozoa. The Biology of Free-living Phagotrophic Protists. Science Tech./Springer, Berlin.Google Scholar
  34. Finlay BJ & Fenchel T (1996) Ecology: Role of ciliates in the natural environment. In: Hausmann K & Bradbury PC (Eds) Ciliates: Cells as Organisms (pp 417–440). Fischer-Verlag, Stuttgart.Google Scholar
  35. Foissner W, Berger H & Schaumburg J (1999) Identification and Ecology of Limnetic Plankton Ciliates. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft. Bayerisches Landesamt für Wasserwirtschaft, Heft 3/99, München.Google Scholar
  36. Fuhrman JA, Lee SH, Masuchi Y, Davis AA & Wilcox RM (1994) Characterization of marine prokaryotic communities via DNA and RNA. Microb. Ecol. 28: 133–145.Google Scholar
  37. Gaedke U & Straile D (1994) Seasonal changes of the quantitative importance of protozoans in a large lake. An ecosystem approach using mass-balanced carbon flow diagrams. Mar. Microb. Food Webs 8: 163–188.Google Scholar
  38. Gaines G & Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (Ed)] The Biology of Dinoflagellates (pp 224–268). Blackwell, Oxford.Google Scholar
  39. Gerritsen J, Sanders RW, Bradley SW & Porter KG (1987) Individual feeding variability of protozoan and crustacean zooplankton analyzed with flow cytometry. Limnol. Oceanogr. 32: 691–699.Google Scholar
  40. Gonzales JM, Sherr EB & Sherr BF (1990) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Enrivon. Microb. 56: 583–589.Google Scholar
  41. Gonzalez JM, Sherr EB & Sherr BF (1993) Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile bacterial prey. Mar. Ecol. Prog. Ser. 102: 257–267.Google Scholar
  42. Güde H (1979) Grazing by protozoa as selection factor for activated sludge bacteria. Microb. Ecol. 5: 225–237.Google Scholar
  43. Güde H (1986) Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J. Plankton Res. 8: 795–810.Google Scholar
  44. Güde H (1989) The role of grazing on bacteria in plankton succession. In: Sommer U (Ed) Plankton Ecology: Succession in Plankton Communities (pp 337–364). Brock/Springer, Berlin.Google Scholar
  45. Hahn MW & Höfle Mg (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol. 35: 113–121.PubMedGoogle Scholar
  46. Hammer A, Gruttner C & Schumann R (1999) The effect of electrostatic charge of food particles on capture efficiency by Oxyrrhis marina Dujardin (dinoflagellate). Protist 150: 375–382.PubMedGoogle Scholar
  47. Hansen FC, Witte HJ & Passarge J (1996) Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliana huxleyi cells. Aquat. Microb. Ecol. 10: 307–313.Google Scholar
  48. Hansen PJ (1992) Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol. 114: 327–334.Google Scholar
  49. Holen DA & Boraas M (1991) The feeding behavior of Spumella sp. as a function of particle size: Implications for bacterial size in pelagic systems. Hydrobiologia 220: 73–88.Google Scholar
  50. Hwang S-J & Heath RT (1997) The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the plankton food web. J. Plankton Res. 19: 491–518.Google Scholar
  51. Jacobson DM & Anderson DM (1986) Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms. J. Phycol. 22: 249–258.Google Scholar
  52. Jakobsen HH & Hansen PJ (1997) Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum - a comparative study. Mar. Ecol. Prog. Ser. 158: 75–86.Google Scholar
  53. Jones RJ (2000) Mixotrophy in planktonic protists: an overview. Freshwat. Biol. 45: 219–226.Google Scholar
  54. Jürgens K, Arndt H & Rothhaupt K-O (1994) Zooplankton-mediated changes of bacterial community structure. Microb. Ecol. 27: 27–42.Google Scholar
  55. Jürgens K & Güde H (1991) Seasonal changes in the grazing impact of phagotrophic flagellates on bacteria in Lake Constance. Mar. Microb. Food Webs 5: 27–37.Google Scholar
  56. Jürgens K & DeMott WR (1995) Behavioral flexibility in prey selection by bacterivorous nanoflagellates. Limnol. Oceanogr. 40: 1503–1507.Google Scholar
  57. Jürgens K, Pernthaler J, Schalla S & Amann R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65: 1241–1250.PubMedGoogle Scholar
  58. Kenter U, Zimmermann U & Müller H (1996) Grazing rates of the freshwater ciliate Balanion planctonicum determined by flow cytometry. J. Plankton Res. 18: 1047–1053.Google Scholar
  59. Landry MR (1994) Methods and controls for measuring the grazing impact of planktonic protists. Mar. Microb. Food Webs 8: 37–57.Google Scholar
  60. Lavin DP, Frederickson AG & Srienc F (1990) Flow cytometric measurement of rates of particle uptake from dilute suspensions by a ciliated protozoan. Cytometry 11: 875–882.PubMedGoogle Scholar
  61. Laybourn-Parry J (1992) Protozoan Plankton Ecology. Chapman & Hall, City. Lessard EJ (1991) The trophic role of heterotrophic dinoflagellates in diverse environments. Mar. Microb. Food Webs 5: 49-58.Google Scholar
  62. Lim EL, Amaral LA, Caron DA & DeLong EF (1993) Application of rRNA-based probes for observing marine nanoplanktonic protists. Appl. Environ. Microbiol. 59: 1647–1655.PubMedGoogle Scholar
  63. Lindström ES, Weisse T & Stadler P (2002) Enumeration of small ciliates in culture by flow cytometry and nucleic acid staining. J. Microb. Meth. 49: 173–182.Google Scholar
  64. McManus GB & Fuhrman JA (1986) Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol. Oceanogr. 31: 420–426.Google Scholar
  65. McManus GB & Okubo A (1991) On the use of surrogate food particles to measure protistan ingestion. Limnol. Oceanogr. 36: 613–617.Google Scholar
  66. Moloney CL & Field JG (1991) The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows. J. Plankton Res. 13: 1003–1038.Google Scholar
  67. Monger BC & Landry MR (1992) Size-selective grazing by heterotrophic nanoflagellates: an analysis using live-stained bacteria and dual-beam flow cytometry. Arch. Hydrobiol. Beih. 37: 173–185.Google Scholar
  68. Montagnes DJS, Berger JD & Taylor FJR (1996) Growth rate of the marine planktonic ciliate Strombidinopsis cheshiri Snyder and Ohman as a function of food concentration and interclonal variability. J. Exp. Mar. Biol. Ecol. 206: 121–132.Google Scholar
  69. Montagnes DJS & Weisse T (2000) Fluctuating temperatures affect growth and production rates of planktonic ciliates. Aquat. Microb. Ecol. 21: 97–102.Google Scholar
  70. Monger BC, Landry MR & Brown SL (1999) Feeding selection of heterotrophic marine nanoflagellates based on the surface hydrophobicity of their picoplankton prey. Limnol. Oceanogr. 44: 1917–1927.Google Scholar
  71. Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241–254.Google Scholar
  72. Müller H (1991) Pseudobalanion planctonicum (Ciliophora, Prostomatida): ecological significance of an algivorous nanociliate in a deep meso-eutrophic lake. J. Plankton Res. 13: 247–262.Google Scholar
  73. Müller H (1996) Selective feeding of a freshwater chrysomonad, Paraphysomonas sp., on chroococcoid cyanobacteria and nanoflagellates. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48: 63–71.Google Scholar
  74. Müller H & Schlegel A (1999) Responses of three freshwater planktonic ciliates with different feeding modes to cryptophyte and diatom prey. Aquat. Microb. Ecol. 17: 49–60.Google Scholar
  75. Müller H & Weisse T (1994) Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRG. J. Plankton Res. 16: 391–401.Google Scholar
  76. Nagata T (1988) The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504–517.Google Scholar
  77. Neuer S & Cowles TJ (1995) Comparative size-specific grazing rates in field populations of ciliates and dinoflagellates. Mar. Ecol. Prog. Ser. 125: 259–267.Google Scholar
  78. Nygaard K, Børsheim KY & Thingstad TF (1988) Grazing rates on bacteria by marine heterotrophic microflagellates compared to uptake rates of bacterial-sized monodisperse fluorescent latex beads. Mar. Ecol. Prog. Ser. 44: 159–165.Google Scholar
  79. Pace ML & Bailiff MD (1987) An evaluation of the fluorescent microsphere technique for measuring grazing rates of phagotrophic organisms. Mar. Ecol. Prog. Ser. 40: 185–193.Google Scholar
  80. Perez-Uz B (1995) Growth rate variability in geographically diverse clones of Uronema (Ciliophora: Scuticociliatida). FEMS Microbiol. Ecol. 16: 193–204.Google Scholar
  81. Pernthaler J, Alfreider A, Posch T, Andreatta S & Psenner R (1997a) In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenköllesee, Austria). Appl. Environ. Microbiol. 63: 4778–4783.PubMedGoogle Scholar
  82. Pernthaler J, Posch T, Šimek K, Vrba J, Amann R & Psenner R (1997b) Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. Environ. Microbiol. 63: 596–601.PubMedGoogle Scholar
  83. Pierce RW & Turner JT (1992) Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6: 139–181.Google Scholar
  84. Pomeroy LR (1974) The ocean's food web: a changing paradigm. BioScience 24: 499–504.Google Scholar
  85. Porter KG, Sherr EB, Sherr BF, Pace M & Sanders RW (1985) Protozoa in planktonic food webs. J. Protozool. 32: 409–415.Google Scholar
  86. Preisig HR, Vörs N & Hällfors G (1991) Diversity of heterokont flagellates. In: Patterson DJ & Larsen J (Eds) The Biology of Free-Living Heterotrophic Flagellates (pp 361–399). Clarendon Press, Oxford.Google Scholar
  87. Psenner R (1993) Determination of size and morphology of aquatic bacteria by automated image analysis. In:Kemp PF, Sherr BF, Sherr EB & Cole JJ (Eds) Handbook of Methods in Aquatic Microbial Ecology (pp 339–345). Lewis Publ., Boca Raton.Google Scholar
  88. Reckermann M & Colijn F (Eds) (2000) Aquatic Flow Cytometry: Achievements and Prospects. Sci. Mar. 64. Institut de Ciències del Mar, C.S.I.C., Barcelona.Google Scholar
  89. Rice J, Sleigh MA, Burkill PH, Tarran GA, O'Connor CD & Zubkov MV (1997) Flow cytometric analysis of characteristics of hybridization of species-specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. Appl. Environ. Microbiol. 63: 938–944.PubMedGoogle Scholar
  90. Riemann B, Søndergaard M, Persson L & Johansson L (1986) Carbon metabolism and community regulation in eutrophic, temperate lakes. In: Riemann B & Søndergaard M (Eds) Carbon Dynamics in Eutrophic, Temperate Lakes (pp 267–280). Elsevier Science Publishers, Amsterdam.Google Scholar
  91. Sanders RW (1991) Trophic strategies among heterotrophic flagellates. In: Patterson DJ & Larsen J (Eds) The Biology of Free-Living Heterotrophic Flagellates (pp 21–38). Clarendon Press, Oxford.Google Scholar
  92. Sanders RW & Porter KG (1986) Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion. Appl. Environ. Microbiol. 52: 101–107.PubMedGoogle Scholar
  93. Sanders RW & Porter KG (1988) Phagotrophic phytoflagellates. Adv. Microb. Ecol. 10: 167–192.Google Scholar
  94. Sanders RW, Porter KG, Bennett SJ & DeBiase AE (1989) Seasonal patterns of bacterivory by flagellates, cilliates, rotifers, and cladocerans in a freshwater plankton community. Limnol. Oceanogr. 34: 673–687.Google Scholar
  95. Schnepf E & Elbrächter M (1992) Nutritional strategies in dinoflagellates. Europ. J. Protistol. 28: 3–24.Google Scholar
  96. Sherr BF & Sherr EB (1984) Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In: Klug MJ & Reddy CA (Eds) Current Perspectives in Microbial Ecology (pp 412–423). American Society for Microbiology, Washington.Google Scholar
  97. Sherr BF, Sherr EB & Berman T (1983) Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol. 45: 1196–1201.PubMedGoogle Scholar
  98. Sherr BF, Sherr EB & Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. App. Environ. Microbiol. 53: 958–965.Google Scholar
  99. Sherr BF, Sherr EB & Rassoulzadegan F (1988) Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Appl. Environ. Microbiol. 54: 1091–1095.PubMedGoogle Scholar
  100. Sherr EB, Rassoulzadegan F & Sherr BF (1989) Bacterivory by pelagic choreotrichous ciliates in coastal waters of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 55: 235–240.Google Scholar
  101. Sherr EB & Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.Google Scholar
  102. Sherr EB & Sherr BF (1993) Protistan grazing rates via uptake of fluorescently labeled prey. In: Kemp PF, Sherr BF, Sherr EB & Cole JJ (Eds) Handbook of Methods in Aquatic Microbial Ecology (pp 695–701). Lewis Pub., Boca Raton.Google Scholar
  103. Sherr EB & Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek (this volume).Google Scholar
  104. Sieracki ME & Webb KL (1991) The application of image analysed fluorescence microscopy for characterising planktonic bacteria and protists. In: Reid PC, Turley CM & Burkill PH (Eds) Protozoa and Their Role in Marine Processes (pp 77–100). Springer Verlag, Berlin.Google Scholar
  105. Šimek K, Bobková J, Macek M, Nedoma J & Psenner R (1995) Ciliate grazing on picoplankton in eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40: 1077–1090.Google Scholar
  106. Šimek K, Hartman P, Nedoma J, Pernthaler J, Springmann D, Vrba J & Psenner R (1997a) Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat. Microb. Ecol. 12: 49–63.Google Scholar
  107. Šimek K, Jürgens K, Comerma M, Armengol J & Nedoma J (2000) Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22: 43–56.Google Scholar
  108. Šimek K, Kojecká P, Nedoma J, Hartman P, Vrba J & Dolan JR (1999) Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44: 1634–1644.Google Scholar
  109. Šimek K, Macek M, Pernthaler J, Straskrabová & Psenner R (1996) Can freshwater planktonic ciliates survive on a diet of picoplankton? J. Plankton Res. 18: 597–613.Google Scholar
  110. Šimek K, Vrba J, Pernthaler J, Posch T, Hartman P, Nedoma J & Psenner R (1997b) Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Environ. Microbiol. 63: 587–595.PubMedGoogle Scholar
  111. Sommer U (1981) The role of r-and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecologia-Oecologica Generalis 2: 327–342.Google Scholar
  112. Strom SL (1991) Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean. Mar. Ecol. Progr. Ser. 78: 103–113.Google Scholar
  113. Suzuki MT (1999) Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat. Microb. Ecol. 20: 261–272.Google Scholar
  114. Swanberg NR (1983) The trophic role of colonial Radiolaria in oligotrophic oceanic environments. Limnol. Oceanogr. 28: 665–666.Google Scholar
  115. Turley CM, Newell RC & Robins DB (1986) Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser. 33: 59–70.Google Scholar
  116. Van Hannen EJ, Veninga M, Bloem J, Gons HJ & Laanbroek HJ (1999) Genetic changes in bacterial community structure associated with protistan grazers. Arch. Hydrobiol. 145: 25–38.Google Scholar
  117. Vaqué D, Gasol JM & Marrasé C (1994) Grazing rates on bacteria: the significance of methodology and ecological factors. Mar. Ecol. Prog. Ser. 109: 263–274.Google Scholar
  118. Vaqué D & Pace LM (1992) Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food-web structure. J. Plankton Res. 14: 307–321.Google Scholar
  119. Vazquez-Dominguez E, Peters F, Gasol JM & Vaqué D (1999) Measuring the grazing losses of picoplankton: methodological improvements in the use of fluorescently labeled tracers combined with flow cytometry. Aquat. Microb. Ecol. 20: 119–128.Google Scholar
  120. Verity PG (1986) Grazing of phototrophic nanoplankton by microzooplankton in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 105–115.Google Scholar
  121. Verity PG & Sieracki ME (1993) Use of color image analysis and epifluorescence microscopy to measure plankton biomass. In: Kemp PF, Sherr BF, Sherr EB & Cole JJ (Eds) Handbook of Methods in Aquatic Microbial Ecology (pp 327–338). Lewis Publ., Boca Raton.Google Scholar
  122. Vézina AF & Platt T (1988) Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods. Mar. Ecol. Prog. Ser. 42: 269–287.Google Scholar
  123. Vrieling EG & Anderson DM (1996) Immunofluorescence phytoplankton research: application and potential. J. Phycol. 32: 1–16.Google Scholar
  124. Vrieling EG, Vriezekolk G, Gieskes WW, Veenhuis M & Harder W (1996) Immuno-flow cytometric identification and enumeration of the ichthyotoxic dinoflagellate Gyrodinium aureolum Hulburt in artifically mixed algal populations. J. Plankton Res. 18: 1503–1512.Google Scholar
  125. Ward BB (1990) Immunology in biological oceanography and marine ecology. Oceanography 3: 30–35.Google Scholar
  126. Weisse T (1997) Growth and production of heterotrophic nanoflagellates in a meso-eutrophic lake. J. Plankton Res. 19: 703–722.Google Scholar
  127. Weisse T & Frahm A (2001) Species-specific interactions between small planktonic ciliates (Urotricha spp.) and rotifers (Keratella spp.). J. Plankton Res. 23: 1329–1338.Google Scholar
  128. Weisse T & Frahm A (2002) Direct and indirect impact of two common rotifer species (Keratella spp.) on two abundant ciliate species (Urotricha furcata, Balanion planctonicum). Freshwat. Biol. 47: 53–64.Google Scholar
  129. Weisse T, Karstens N, Meyer VCL, Janke J, Lettner S, & Teichgräber K (2001) Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat. Microb. Ecol. 26: 167–179.Google Scholar
  130. Weisse T & Kirchhoff B (1997) Feeding of the heterotrophic freshwater dinoflagellate Peridiniopsis berolinense on cryptophytes: analysis by flow cytometry and electronic particle counting. Aquat. Microb. Ecol. 12: 153–164.Google Scholar
  131. Weisse T & Lettner S (2002) The ecological significance of intraspecific variation among freshwater ciliates. Verh. Internat. Verein. Limnol. 28: (in press).Google Scholar
  132. Weisse T & Montagnes DJS (1998) Effect of temperature on interand intraspecific isolates of Urotricha (Prostomatida, Ciliophora). Aquat. Microb. Ecol. 15: 285–291.Google Scholar
  133. Weisse T & Müller H (1998) Planktonic protozoa and the microbial food web in Lake Constance. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 223–254.Google Scholar
  134. Weisse T, Müller H, Pinto-Coelho RM, Schweizer A, Springmann D & Baldringer G (1990) Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol. Oceanogr. 35: 781–794.Google Scholar
  135. Williams PJl (1981) Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. Sonderh. 1: 1–28.Google Scholar
  136. Wylie JL & Currie DJ (1991) The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708–728.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Thomas Weisse
    • 1
  1. 1.Institute for Limnology of the Austrian Academy of SciencesMondseeAustria

Personalised recommendations