Journal of Bioenergetics and Biomembranes

, Volume 30, Issue 1, pp 15–24 | Cite as

From NO to OO: Nitric Oxide and Dioxygen in Bacterial Respiration

  • Janneke Hendriks
  • Ulrich Gohlke
  • Matti Saraste

Abstract

Nitric oxide reductase (NOR) is a key enzyme in denitrification, reforming the N–N bond (making N2O from two NO molecules) in the nitrogen cycle. It is a cytochrome bc complex which has apparently only two subunits, NorB and NorC. It contains two low-spin cytochromes (c and b), and a high-spin cytochrome b which forms a binuclear center with a non-heme iron. NorC contains the c-type heme and NorB can be predicted to bind the other metal centers. NorB is homologous to the major subunit of the heme/copper cytochrome oxidases, and NOR thus belongs to the superfamily, although it has an Fe/Fe active site rather than an Fe/Cu binuclear center and a different catalytic activity. Current evidence suggests that NOR is not a proton pump, and that the protons consumed in NO reduction are not taken from the cytoplasmic side of the membrane. Therefore, the comparison between structural and functional properties of NOR and cytochrome c- and quinol-oxidizing enzymes which function as proton pumps may help us to understand the mechanism of the latter. This review is a brief summary of the current knowledge on molecular biology, structure, and bioenergetics of NOR as a member of the oxidase superfamily.

Cytochrome oxidase nitric oxide reductase respiration denitrification evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Arai, H., Igarashi, Y., and Kodama, T. (1994). Biosci. Biotechnol. Biochem. 58, 1286-1291.PubMedGoogle Scholar
  2. Arai, H., Igarashi, Y., and Kodama, T. (1995). Biochim. Biophys. Acta 1261, 279-284.PubMedGoogle Scholar
  3. Bartnikas, T. B., Tosques, I. E., Laratta, W. P., J. Shi, J., and Shapleigh, J. P. (1997). J. Bacteriol. 179, 3534-40PubMedGoogle Scholar
  4. Barton, G. J. (1993). Protein Eng. 6, 37-40.PubMedGoogle Scholar
  5. Bell, L. C., Richardson, D. J., and Ferguson, S. J. (1992). J. Gen. Microbiol. 138, 437-443.PubMedGoogle Scholar
  6. Berks, B. C., Ferguson, S. J., Moir, J. W. B., and Richardson, D. J. (1995). Biochim. Biophys. Acta 1232, 97-173.PubMedGoogle Scholar
  7. Boogerd, F. C., van Verseveld, H. W., and Stouthamer, A. H. (1981). Biochim. Biophys. Acta 638, 181-191.PubMedGoogle Scholar
  8. Braun, C., and Zumft, W. G. (1991) J. Biol. Chem. 266, 22785-22788.PubMedGoogle Scholar
  9. Brzezinski, P., and Ädelroth, P. (1997). J. Bioenerg. Biomembr., this issue.Google Scholar
  10. Carr, G. J., and Ferguson, S. J. (1990). Biochem. J. 269, 423-429.PubMedGoogle Scholar
  11. Carr, G. J., Page, M. D., and Ferguson, S. J. (1989). Eur. J. Biochem. 179, 683-692.PubMedGoogle Scholar
  12. Castresana, J., and Saraste, M. (1995). Trends Biochem. Sci. 20, 443-448.PubMedGoogle Scholar
  13. Castresana, J., Lübben, M., Saraste, M., and Higgins, D. G. (1994). EMBO J. 13, 2516-2525.PubMedGoogle Scholar
  14. De Boer, A. P., van der Oost, J., Reijnders, W. N., Westerhoff, H. V., Stouthamer, A. H., and van Spanning, R. J. (1996). Eur. J. Biochem. 242, 592-600.PubMedGoogle Scholar
  15. Dermanstia, M., Turk, T., and Hollocher, T. C. (1991). J. Biol. Chem. 266, 10899-10905.PubMedGoogle Scholar
  16. Falkowski, P. G. (1997). Nature 387, 272-275.Google Scholar
  17. Fujiwara, T., and Fukumori, Y. (1996). J. Bacteriol. 178, 1866-1871.PubMedGoogle Scholar
  18. Girsch, P., and de Vries, S. (1997). Biochim. Biophys. Acta 1318, 202-216.PubMedGoogle Scholar
  19. Haltia, T., Finel, M., Harms, N., Nakari, T., Raitio, M., Wikström, M., and Saraste, M. (1989). EMBO J. 8, 3571-3579.PubMedGoogle Scholar
  20. Heiss, B., Frunzke, K., and Zumft, W.G. (1989). J. Bacteriol. 171, 3288-3297.PubMedGoogle Scholar
  21. Higgins, D. G., Bleasby, A. J., and Fuchs, R. (1991). CABIOS 8, 189-191.Google Scholar
  22. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995). Nature 376, 660-669.PubMedGoogle Scholar
  23. Jones, A. M., and Hollocher, T. C. (1993). Biochim. Biophys. Acta 1144, 359-366.Google Scholar
  24. Jüngst, A., and Zumft, W. G. (1992). FEBS Lett. 314, 308-314.PubMedGoogle Scholar
  25. Kannt, A., Michel, H., Cheesman, M. R., Thomson, A. J., Dreusch, A. B., Körner, H., and Zumft, W. G. (1997). In Biological Electron-Transfer Chains: Genetics, Composition and Mode of Operation” (Canters, G. W., and Vijgenboom, E., eds.), Kluwer Academic Publishers, Dordrecht, in press.Google Scholar
  26. Kasting, F. J. (1993). Science 259, 920-926.Google Scholar
  27. Kastrau, D. H., Heiss, B., Kroneck, P. M., and W. G. Zumft, W. G. (1994). Eur. J. Biochem. 222, 293-303.PubMedGoogle Scholar
  28. Rost, B., Casadio, R., Fariselli, P., and Sander, C. (1995). Protein Sci. 4, 521-533.PubMedGoogle Scholar
  29. Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D., and Hord, C. (1993). Nature 365, 715-721.PubMedGoogle Scholar
  30. Saraste, M., and Castresana, J. (1994). FEBS Lett. 341, 1-4.PubMedGoogle Scholar
  31. Saraste, M., Castresana, J., Higgins, D., Lübben, M., and Wilmanns, M. (1996). In Origin and Evolution of Biological Energy Conversion (Baltscheffsky, H., ed.), VCH Publishers, New York, pp. 255-289.Google Scholar
  32. Shapleigh, J. P., and Payne, W. J. (1985). J. Bacteriol. 163, 837-840.PubMedGoogle Scholar
  33. Stouthamer, A. H. (1992). Antonie van Leeuwenhoek 61, 1-33.PubMedGoogle Scholar
  34. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1995). Science 269, 1069-1074.PubMedGoogle Scholar
  35. Van der Oost, J., de Boer, A. P. N., de Gier, J.-W., Zumft, W. G., Stouthamer, A. H., and van Spanning, R. J. M. (1994). FEMS Microbiol. Lett. 121, 1-10.PubMedGoogle Scholar
  36. Wikström, M., Morgan, J. E., Hummer, G., Woodruff, W. H., and Verkhovsky, M. I. (1997). In Frontiers of Cellular Bioenergetics (Papa, S., et al., eds.), Plenum Press, New York, in press.Google Scholar
  37. Zumft, W. G. (1993). Arch. Microbiol. 160, 253-264.PubMedGoogle Scholar
  38. Zumft, W. G., and Körner, H. (1997). Antonie van Leeuwenhoek 71, 43-58.PubMedGoogle Scholar
  39. Zumft, W. G., Braun, C., and H. Cuypers (1994). Eur. J. Biochem. 219, 481-490.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Janneke Hendriks
    • 1
  • Ulrich Gohlke
    • 1
  • Matti Saraste
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations