Advertisement

Antonie van Leeuwenhoek

, 81:155 | Cite as

Experimental social evolution with Myxococcus xanthus

  • Gregory J. Velicer
  • Kristina L. Stredwick
Article

Abstract

Genetically-based social behaviors are subject to evolutionary change in response to natural selection. Numerous microbial systems provide not only the opportunity to understand the genetic mechanisms underlying specific social interactions, but also to observe evolutionary changes in sociality over short time periods. Here we summarize experiments in which behaviors of the social bacterium Myxococcus xanthus changed extensively during evolutionary adaptation to two relatively asocial laboratory environments. M. xanthus moves cooperatively, exhibits cooperative multicellular development upon starvation and also appears to prey cooperatively on other bacteria. Replicate populations of M. xanthus were evolved in both structured (agar plate) and unstructured (liquid) environments that contained abundant resources. The importance of social cooperation for evolutionary fitness in these habitats was limited by the absence of positive selection for starvation-induced spore production or predatory efficiency. Evolved populations showed major losses in all measured categories of social proficiency- motility, predation, fruiting ability, and sporulation. Moreover, several evolved genotypes were observed to exploit the social behavior of their ancestral parent when mixed together during the developmental process. These experiments that resulted in both socially defective and socially exploitative genotypes demonstrate the power of laboratory selection experiments for studying social evolution at the microbial level. Results from additional selection experiments that place positive selection pressure on social phenotypes can be integrated with direct study of natural populations to increase our understanding of principles that underlie the evolution of microbial social behavior.

behavior cooperation evolution predation Myxococcus social 

References

  1. Adami C, Ofria C & Collier TC (2000) Evolution of biological complexity. Proc. Natl. Acad. Sci. USA 97: 4463–4468.PubMedCrossRefGoogle Scholar
  2. Adams DG (2000) Heterocyst formation in cyanobacteria. Curr. Opin. Microbiol. 3: 618–624.PubMedCrossRefGoogle Scholar
  3. Bever JD & Simms EL (2000) Evolution of nitrogen fixation in spatially structured populations of Rhizobium. Heredity 85 Pt 4: 366–372.PubMedCrossRefGoogle Scholar
  4. Bjorkman J, Hughes D & Andersson DI (1998) Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 95: 3949–3953.PubMedCrossRefGoogle Scholar
  5. Bouma JE & Lenski RE (1988) Evolution of a bacteria/plasmid association. Nature 335: 351–352.PubMedCrossRefGoogle Scholar
  6. Bretscher AP & Kaiser D (1978) Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133: 763–768.PubMedGoogle Scholar
  7. Bull HJ, McKenzie GJ, Hastings PJ & Rosenberg SM (2000) Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics 154: 1427–1437.PubMedGoogle Scholar
  8. Burkholder JM (1999) The lurking perils of Pfiesteria. Sci. Am. 281: 42–49.PubMedCrossRefGoogle Scholar
  9. Chao L & Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc. Natl. Acad. Sci. USA 78: 6324–6328.PubMedCrossRefGoogle Scholar
  10. Chao L & Tran TT (1997) The advantage of sex in the RNA virus φ6. Genetics 147: 953–959.PubMedGoogle Scholar
  11. Cooper VS & Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407: 736–739.PubMedCrossRefGoogle Scholar
  12. Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16: 178–183.PubMedCrossRefGoogle Scholar
  13. Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24: 403–427.PubMedCrossRefGoogle Scholar
  14. de Visser JAGM, Zeyl CW, Gerrish PJ, Blanchard JL & Lenski RE (1999) Diminishing returns from mutation supply rate in asexual populations. Science 283: 404–406.CrossRefGoogle Scholar
  15. Denison RF (2000) Legume sanctions and the evolution of symbiotic cooperation by Rhizobia. Am. Nat. 156: 567–576.CrossRefGoogle Scholar
  16. Engelberg-Kulka H & Glaser G (1999) Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53: 43–70.PubMedCrossRefGoogle Scholar
  17. Giraldeau L-A & Caraco T (2000). Social Foraging Theory. Princeton University Press, Princeton, NJ.Google Scholar
  18. Imhof M & Schlotterer C (2001) Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc. Natl. Acad. Sci. USA 98: 1113–1117.PubMedCrossRefGoogle Scholar
  19. Kaiser D (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 5952–5956.PubMedCrossRefGoogle Scholar
  20. Kaiser D, Kroos L & Kuspa A (1985). Cell interactions govern the temporal pattern of Myxococcus development. Cold Spring Harbor Symp. Quant. Biol. (pp 823–830). Cold Spring Harbor Laboratory, L: Cold Spring Harbor.Google Scholar
  21. Kelemen GH, Viollier PH, Tenor J, Marri L, Buttner MJ & Thompson CJ (2001) A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Mol. Microbiol. 40: 804–814.PubMedCrossRefGoogle Scholar
  22. Kroos L, Kuspa A & Kaiser D (1986) A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117: 252–266.PubMedCrossRefGoogle Scholar
  23. Lenski RE (1988a) Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425–432.CrossRefGoogle Scholar
  24. Lenski RE (1988b) Experimental studies of pleiotropy and epistatsis in Escherichia coli. II. Compensation for maladaptic pleiotropic effects associated with resistance to virus T4. Evolution 42: 433–440.CrossRefGoogle Scholar
  25. Lenski RE, Ofria C, Collier TC & Adami C (1999) Genome complexity, robustness and genetic interactions in digital organisms. Nature 400: 661–664.PubMedCrossRefGoogle Scholar
  26. Lenski RE, Simpson SC & Nguyen TT (1994) Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J. Bacteriol. 176: 3140–3147.PubMedGoogle Scholar
  27. Lewis K (2000) Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503–514.PubMedCrossRefGoogle Scholar
  28. Mann J (1997) Myxobacterial bounty. Nature 385: 117.PubMedCrossRefGoogle Scholar
  29. McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55: 49–75.PubMedCrossRefGoogle Scholar
  30. Miguelez EM, Hardisson C & Manzanal MB (2000) Streptomycetes: a new model to study cell death. Int. Microbiol. 3: 153–158.PubMedGoogle Scholar
  31. Miller MB & Bassler BL (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165–199.PubMedCrossRefGoogle Scholar
  32. Modi RI, Wilke CM, Rosenzweig RF & Adams J (1991) Plasmid macro-evolution: selection of deletions during adaptation in a nutrient-limited environment. Genetica 84: 195–202.PubMedCrossRefGoogle Scholar
  33. Moore FB-G, Rozen DE & Lenski RE (2000) Pervasive compensatory adaptation in Escherichia coli. Proc. R. Soc. Lond. B. Biol. Sci. 267: 515–522.CrossRefGoogle Scholar
  34. O'Conner K & Zusman D (1988) Reexamination of the role of autolysis in the development of Myxococcus xanthus. J. Bacteriol. 170: 4103–4112.Google Scholar
  35. O'Toole G, Kaplan HB & Kolter R (2000) Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49–79.PubMedCrossRefGoogle Scholar
  36. Redfield RJ, Schrag MR & Dean AM (1997) The evolution of bacterial transformation: sex with poor relations. Genetics 146: 27–38.PubMedGoogle Scholar
  37. Reichenbach H (1999) The ecology of the myxobacteria. Environ. Microbiol. 1: 15–21.PubMedCrossRefGoogle Scholar
  38. Ricklefs RE & Miller GL (1999). Evolution and social behavior. Ecology. W. H. Freeman and Company, New York. (pp 699–719).Google Scholar
  39. Rosenberg E, Keller K & Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129: 770–777.PubMedGoogle Scholar
  40. Rosenberg E & Varon M (1984). Antibiotics and lytic enzymes. In: Rosenberg E (Ed) Myxobacteria: Development and Cell Interactions (pp 109–125). Springer-Verlag, New York.Google Scholar
  41. Schrag SJ, Perrot V & Levin BR (1997) Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond. B Biol. Sci. 264: 1287–1291.CrossRefGoogle Scholar
  42. Shi W & Zusman DR (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90: 3378–3382.PubMedCrossRefGoogle Scholar
  43. Shimkets L & Woese CR (1992) A phylogenetic analysis of the myxobacteria: basis for their classification. Proc. Natl. Acad. Sci. USA 89: 9459–9463.PubMedCrossRefGoogle Scholar
  44. Shimkets LJ (1999) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53: 525–549.PubMedCrossRefGoogle Scholar
  45. Shub DA (1994) Bacterial viruses. Bacterial altruism? Curr. Biol. 4: 555–556.PubMedCrossRefGoogle Scholar
  46. Sniegowski PD, Gerrish PJ & Lenski RE (1997) Evolution of high mutation rates in experimental populations of Escherichia coli. Nature 387: 703–705.PubMedCrossRefGoogle Scholar
  47. Souza V, Turner PE & Lenski RE (1997) Long-term experimental evolution in Escherichia coli. 5. Effects of recombination with immigrant genotypes on the rate of bacterial evolution. J. Evol. Biol. 10: 743–769.CrossRefGoogle Scholar
  48. Spormann AM (1999) Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63: 621–641.PubMedGoogle Scholar
  49. Stephens DW & Krebs JR (1986). Foraging Theory. Princeton University Press, Princeton, NJ.Google Scholar
  50. Strassmann JE, Zhu Y & Queller DC (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408: 965–967.PubMedCrossRefGoogle Scholar
  51. Turner PE & Chao L (1999) Prisoner's dilemma in an RNA virus. Nature 398: 441–443.PubMedCrossRefGoogle Scholar
  52. Velicer GJ, Kroos L & Lenski RE (1998) Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc. Natl. Acad. Sci. USA 95: 12376–12380.PubMedCrossRefGoogle Scholar
  53. Velicer GJ, Kroos L & Lenski R (2000) Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404: 598–601.PubMedCrossRefGoogle Scholar
  54. Velicer GJ, Lenski R & Kroos L (2002) Rescue of social motility lost during evolution of Myxococcus xanthus in an asocial environment. J. Bacteriol. 184: 2719–2727.PubMedCrossRefGoogle Scholar
  55. Vulic M, Lenski RE & Radman M (1999) Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc. Natl. Acad. Sci. USA 96: 7348–7351.PubMedCrossRefGoogle Scholar
  56. Vulic M, Kolter R (2001) Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics 158: 519–526.PubMedGoogle Scholar
  57. Watve MG, Shete AM, Jadhav N, Wagh SA, Shelar SP, Chakraborti SS, Botre AP & Kulkarni AA (1999) Myxobacterial diversity in Indian soils-How many species do we have? Curr. Sci. 77: 1089–1095.Google Scholar
  58. Weijer CJ (1999) Morphogenetic cell movement in Dictyostelium. Semin. Cell Dev. Biol. 10: 609–619.PubMedCrossRefGoogle Scholar
  59. Wilke CO, Wang JL, Ofria C, Lenski RE & Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412: 331–333.PubMedCrossRefGoogle Scholar
  60. Wireman JW & Dworkin M (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129: 796–802.Google Scholar
  61. Withers H, Swift S & Williams P (2001) Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr. Opin. Microbiol. 4: 186–193.PubMedCrossRefGoogle Scholar
  62. Yu YT & Snyder L (1994) Translation elongation factor Tu cleaved by a phage-exclusion system. Proc. Natl. Acad. Sci. USA 91: 802–806.PubMedCrossRefGoogle Scholar
  63. Zahavi A & Ralt D (1984). Social adaptations in myxobacteria. In: Rosenberg E (Ed) Myxobacteria: Development and Cell Interactions (pp 215–220). Springer-Verlag, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Gregory J. Velicer
    • 1
  • Kristina L. Stredwick
    • 2
  1. 1.Department of Evolutionary BiologyMax-Planck-Institute for Developmental BiologyTuebingenGermany;
  2. 2.Department of MicrobiologyMichigan State UniversityEast LansingUSA

Personalised recommendations