Skip to main content
Log in

The Role of Apoptosis in Normal and Abnormal Embryonic Development

  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Programmed cell death or apoptosis is a widespread biological phenomenon. Apoptosis is characterized by typical cell features such as membrane blebbing, chromatin condensation, and DNA fragmentation. It involves a number of membrane receptors (e.g., Fas, TNFR) and a cascade of signal transduction steps resulting in the activation of a number of cysteine proteases known as caspases. Disordered apoptosis may lead to carcinogenesis and participates in the pathogenesis of Alzheimer disease, Parkinson disease, or AIDS. Programmed cell death plays an important role in the processes of gamete maturation as well as in embryo development, contributing to the appropriate formation of various organs and structures. Apoptosis is one of the mechanisms of action of various cytotoxic agents and teratogens. Teratogen-induced excessive death of embryonic cells is undoubtedly one of the most important events preceding the occurrence of structural abnormalities, regardless of their nature. Therefore understanding the mechanisms involved in physiological as well as in disturbed or dysregulated apoptosis may lead to the development of new methods of preventive treatment of various developmental abnormalities. The present review summarizes data on the mechanisms of programmed cell death and concentrates on apoptosis involved in normal or disturbed gametogenesis and in normal and abnormal embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Sadler TW, Hanter ES: Principles of abnormal development. Past, present and future. In Development Toxicology, CA Kimmel, J. Buelke-Sam (eds). New York, Raven Press, 1994, pp. 53-63

    Google Scholar 

  2. Richburg JH: Environmental testicular toxicity & germ cell apoptosis. Bethesda, MD, Crisp Data base, National Institutes of Health, 1999

    Google Scholar 

  3. Bodey B, Bodey B Jr, Kaiser HE: Apoptosis in the mammalian thymus during normal histogenesis and under various in vitro and in vivo experimental conditions. In Vivo 1998;12:123-133

    Google Scholar 

  4. Collins JA, Schandi CA, Young KK, Vesely J, Willingham MC: Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem 1997;45:923-934

    Google Scholar 

  5. Thornberry NA, Lazebnik Y: Caspases: enemies within. Science 1998;281:1312-1316

    Google Scholar 

  6. Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science 1998;281:1305-1308

    Google Scholar 

  7. Peter ME, Krammer PH: Mechanisms of CD95 (APO-1/FAS)-mediated apoptosis. Curr Opin Immunol 1998;10:545-551

    Google Scholar 

  8. Fuchs EJ, McKenna KA, Bedi A: P53-dependent DNA damage-induced apoptosis requires FAS/APO-1-independent activation of CPP32beta. Cancer Res 1997;57:2550-2554

    Google Scholar 

  9. Evan G, Littlewood T: A matter of life and cell death. Science 1998;281:1317-1322

    Google Scholar 

  10. King KL, Cidlowski JA: Cell cycle regulation and apoptosis. Annu Rev Physiol 1998;60:601-617

    Google Scholar 

  11. Janicke RU, Sprengart ML, Wati MR, Porter AG: Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998;273:9357-9360

    Google Scholar 

  12. Adams JM, Cory S: The Bcl-2 protein family: arbitres of cell survival. Science, 1998;281:1322-1326

    Google Scholar 

  13. Sadoul R: BCL-2 family members in the development and degenerative pathologies of the nervous system. Cell Death Diff 1998;5:805-815

    Google Scholar 

  14. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA: Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94:325-337

    Google Scholar 

  15. Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW: Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 1998;12:806-819

    Google Scholar 

  16. Blanco-Rodriguez J, Martinez-Garcia C: Apoptosis pattern elicited by several apoptogenic agents on the seminiferous epithelium of the adult rat testis. J Androl 1998;19:487-497

    Google Scholar 

  17. Larsen WJ: Human Embryology. Singapore, Churchill Livingstone, 1993

    Google Scholar 

  18. De Pol A, Vaccina F, Forabosco A, Cavazzuti E, Marzona L: Apoptosis of germ cells during human prenatal oogenesis. Hum Reprod 1997;12:2235-2241

    Google Scholar 

  19. De Pol A, Marzona L, Vaccina F, Negro R, Sena P, Forabosco A: Apoptosis in different stages of human oogenesis. Anticancer Res 1998;18:3457-3461

    Google Scholar 

  20. Tesarik J, Guido M, Mendoza C, Greco E: Human spermatogenesis in vitro: Respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. J Clin Endocrinol Metab 1998;83:4467-4473

    Google Scholar 

  21. Pentikainen V, Erkkila K, Dunkel L: Fas regulates germ cell apoptosis in the human testis in vitro. Am J Physiol 1999;276(2, Pt 1):E310-E316

    Google Scholar 

  22. Lee J, Richburg JH, Younkin SC, Boekelheide K: The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 1997;138:2081-2088

    Google Scholar 

  23. Sugihara A, Saiki S, Tsuji M, Tsujimura T, Nakata Y, Kubota A, Kotake T, Terada N: Expression of Fas and Fas ligand in the testes and testicular germ cell tumors: an immunohistochemical study. Anticancer Res 1997;17:3861-2865

    Google Scholar 

  24. Ogi S, Tanji N, Yokoyama M, Takeuchi M, Terada N: Involvement of Fas in the apoptosis of mouse germ cells induced by experimental cryptorchidism. Urol Res 1998;26:17-21

    Google Scholar 

  25. Leo CP, Hsu SY, McGee EA, Salanova M, Hsueh AJ: DEFT, a novel death effector domain-containing molecule predominantly expressed in testicular germ cells. Endocrinology 1998;139:4839-4848

    Google Scholar 

  26. Schwartz D, Goldfinger N, Rotter V: Expression of p53 protein in spermatogenesis is confined to the tetraploid pachytene primary spermatocytes. Oncogene 1993;8:1487-1494

    Google Scholar 

  27. Almon E, Goldfinger N, Kapon A, Schwartz D, Levine A.J, Rotter V: Testicular tissue-specific expression of the p53 supressor gene. Dev Biol 1993;156:107-116

    Google Scholar 

  28. Sjoblom T, Lahdetie J: Expression of p53 in normal and gamma-irradiated rat testis suggests a role for p53 in a meiotic recombination and repair. Oncogene 1996;12:2499-2505

    Google Scholar 

  29. Yin Y, Stahl BC, DeWolf WC, Morgentaler A: p53-mediated germ cell quality control in spermatogenesis. Dev Biol 1998;204:165-171

    Google Scholar 

  30. De Rooij DG: Stem cells in the testis. Int J Exp Pathol 1998;79:67-80

    Google Scholar 

  31. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P: An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO 1997;16:2262-2270

    Google Scholar 

  32. Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N, de Kretser D, Metcalf D, Kontgen F, Adams JM, Cory S: Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci USA 1998;95:12424-12431

    Google Scholar 

  33. Hasegawa M, Zhang Y, Niibe H, Terry NH, Meistrich ML: Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice. Radiat Res 1998;149(3):263-270

    Google Scholar 

  34. Oliver RT: Germ cell cancer of the testis. Curr Opin Oncol 1998;10(3):266-272

    Google Scholar 

  35. Xu JP, Li X, Mori E, Sato E, Saito S, Guo MW, Mori T: Expression of Fas-Fas ligand system associated with atresia in murine ovary. Zygote 1997;5(4):321-327

    Google Scholar 

  36. Ogi S, Tanji N, Yokoyama M, Takeuchi M, Terada N: Involvement of Fas in the apoptosis of mouse germ cells induced by experimental cryptorchidism. Urol Res 1998;26(1):17-21

    Google Scholar 

  37. Arriola EL, Rodriguez-Lopez AM, Hickman JA, Chresta CM: Bcl-2 overexpression results in reciprocal downregulation of Bcl-X(L) and sensitizes human testicular germ cell tumours to chemotherapy-induced apoptosis. Oncogene 1999;18(7):1457-1464

    Google Scholar 

  38. Woolveridge I, de Boer-Brouwer M, Taylor MF, Teerds KJ, Wu FC, Morris ID: Apoptosis in the rat spermatogenic epithelium following androgen withdrawal: Changes in apoptosis-related genes. Biol Reprod 1999;60(2):461-470

    Google Scholar 

  39. Hardy K: Cell death in mammalian blastocyst. Mol Hum Reprod 1997;3:919-925

    Google Scholar 

  40. Kumazawa T, Inouye M, Hayasaka I, Yamamura H, Murata Y: Difference in sensitivity of inner cell mass and trophectoderm to X-irradiation in mouse blastocysts. Teratology 1998;57:146-151

    Google Scholar 

  41. Brison DR, Schultz RM: Apoptosis during mouse blastocyst formation: Evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod 1997;56:1088-1096

    Google Scholar 

  42. Runic R, Lockwood CJ, LaChapelle L, Dipasquale B, Demopoulos RI, Kumar A, Guller S: Apoptosis and Fas expression in human fetal membranes. J Clin Endocrinol Metab 1998;83:660-666

    Google Scholar 

  43. Wiley LM, Wu JX, Harari I, Adamson ED: Epidermal growth factor receptor mRNA and protein increase after the four-cell preimplantation stage in murine development. Dev Biol 1992;149:247-260

    Google Scholar 

  44. Nelson DM: Apoptotic changes occur in syncytiotrophoblast of human placental villi where fibrin type fibrinoid is deposited at discontinuities in the villous trophoblast. Placenta 1996;17:387-391

    Google Scholar 

  45. Uckan D, Steele A, Cherry, Wang BY, Chamizo W, Koutsonikolis A, Gilbert-Barness E, Good RA: Trophoblasts express Fas ligand: A proposed mechanism for immune privilege in placenta and maternal invasion. Mol Hum Reprod 1997;3:655-662

    Google Scholar 

  46. Jacobson MD, Weil M, Raff MC: Programmed cell death in animal development. Cell 1997;88:347-354

    Google Scholar 

  47. Narayanan V: Apoptosis in development and disease of the nervous system. 1. Naturally occurring cell death in the developing nervous system. Pediatr Neurol 1997;16:9-13

    Google Scholar 

  48. Mori C, Nakamura N, Kimura S, Irie H, Takigawa T, Shiota K: Programmed cell death in the interdigital tissue of the fetal mouse limb is apoptosis with DNA fragmentation. Anat Rec 1995;242:103-110

    Google Scholar 

  49. Zakeri ZF, Ahuja HS: Cell death/apoptosis: Normal, chemically induced and teratogenic effect. Mutat Res 1997;396:149-161

    Google Scholar 

  50. Hurle JM, Ros MA, Climent V, Garcia-Martinez V: Morphology and significance of programmed cell death in the developing limb bud of the vertebrate embryo. Microsc Res Tech 1996;34:236-246

    Google Scholar 

  51. Lee DM, Osathanondh R, Yeh J: Localization of Bcl-2 in the human fetal mullerian tract. Fertil Steril 1998;70:135-140

    Google Scholar 

  52. Kavlock RJ, Daston GP: Introduction. In Drug Toxicity in Embryonic Development, RJ Kavlock, GP Daston (eds). Berlin/Heidelberg, Springer-Verlag, 1997, pp 1-11

    Google Scholar 

  53. Scott WJ: Cell death and reduced proliferative rate. In Handbook of Teratology, Vol. 2, JG Wilson, FC Fraser (eds). New York/London, Plenum Press, 1977, pp 81-98

    Google Scholar 

  54. Edwards MJ, Walsh DA, Li Z: Hyperthermia, teratogenesis and the heat shock response in mammalian embryos in culture. Int J Dev Biol 1997;41:345-358

    Google Scholar 

  55. Shepard TH: Catalog of Teratogenic Agents. Baltimore/London, The Johns Hopkins University Press, 1992

    Google Scholar 

  56. Mirkes PE, Cornel LM, Park HW, Cunnigham ML: Induction of thermotolerance in early postimplantation rat embryos is associated with increased resistance to hyperthermia-induced apoptosis. Teratology 1997;56:210-219

    Google Scholar 

  57. Yitzhakie D, Torchinsky A, Savion S, Toder V: Maternal immunopotentiation affects the teratogenic response to hyperthermia. J Reprod Immunol 1999 (in press)

  58. Siles E, Villalobos M, Jones L, Guerrero R, Eady JJ, Valenzuela MT, Nunez MI, McMillan TJ, Ruiz de Almodovar JM: Apoptosis after gamma irradiation. Is it an important cell death modality? Br J Cancer 1998;78:1594-1599

    Google Scholar 

  59. Torchinsky A, Fein A and Toder V: Immunoteratology: I. MHC involvement in the embryo response to teratogens in mice. Am J Reprod Immunol 1995;34:288-298

    Google Scholar 

  60. Zile MH: Vitamin A and embryonic development: An overview. J Nutr 1998;128:455S-458S

    Google Scholar 

  61. Rogers MB: Life-and-death decision influenced by retinoids. Curr Topics Dev Biol 1997;35:1-46

    Google Scholar 

  62. Phelan SA, Ito M, Loeken MR: Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes 1997;46:1189-1197

    Google Scholar 

  63. Moley KH, Chi MM, Knudson CM, Korsmeyer SJ, Mueckler MM: Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med 1998;4:1421-1424

    Google Scholar 

  64. Forsberg H, Eriksson UJ, Welsh N: Apoptosis in embryos of diabetic rats. Pharmacol Toxicol 1998;83:104-111

    Google Scholar 

  65. Wilson JG: Current status of teratology-general principles and mechanisms derived from animal studies. In Handbook of Teratology, Vol 1, JG Wilson, FC Fraser (eds). New York/London, Plenum Press, 1977, pp 47-74

    Google Scholar 

  66. Torchinsky A, Savion S, Gorivodsky M, Shepshelovich J, Zaslavsky Z, Fein A. Toder V: Cyclophosphamide-induced teratogenesis in ICR mice: The role of apoptosis. Teratogen Mutagen Carcinogen 1995;15:179-190

    Google Scholar 

  67. Nomura T, Hata S, Kusafuka T: Suppression of developmental anomalies by maternal macrophages in mice. J Exp Med 1990;172:1325-1330

    Google Scholar 

  68. Baines MG, Duglos AJ, deFougerolles AR, and Gendron RL: Immunological prevention of spontaneous early embryo resorption is mediated by non-specific immunostimulation. Am J Reprod Immunol 1996;35:34-42

    Google Scholar 

  69. Clark DA, Banwatt D and Chaouat G: Stress-triggered abortion in mice is prevented by alloimmunization. Am J Reprod Immunol 1993;29:141-147

    Google Scholar 

  70. Torchinsky A, Toder V, Savion S, Shepshelovich J, Orenstein H and Fein A: Immunopotentiation increases the resistance of mouse embryos to diabetes-induced teratogenic effect. Diabetologia 1997;40:635-640

    Google Scholar 

  71. Toder V, Savion S, Gorivodsky M, Shepshelovich J, Torchinsky A: Teratogen-induced apoptosis may be affected by immunopotentiation. J Reprod Immunol 1996;30:173-185

    Google Scholar 

  72. Ivnitsky I, Torchinsky A, Gorivodsky M, Zemlyak I, Orenstein H, Savion S, Shepshelovich J, Carp H, Fein A, Toder V: TNF-α expression in embryos exposed to a teratogen. Am J Reprod Immunol 1998;40:431-440

    Google Scholar 

  73. Gorivodsky M, Zemliak I, Orenstein H, Savion S, Fein A, Torchinsky A, Toder V: Tumor necrosis factor alpha mRNA and protein expression in the uteroplacental unit of mice with pregnancy loss. J Immunol 1998;160:4280-4288

    Google Scholar 

  74. Gorivodsky M, Torchinsky A, Zemliak I, Savion S, Fein A, Toder V: TGFβ2 mRNA expression and pregnancy failure in mice. Am J Reprod Immunol 1999;42:124-133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brill, A., Torchinsky, A., Carp, H. et al. The Role of Apoptosis in Normal and Abnormal Embryonic Development. J Assist Reprod Genet 16, 512–519 (1999). https://doi.org/10.1023/A:1020541019347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020541019347

Navigation