Molecular and Cellular Biochemistry

, Volume 239, Issue 1–2, pp 9–15 | Cite as

Critical steps in cellular fatty acid uptake and utilization

  • Ger J. van der Vusse
  • Marc van Bilsen
  • Jan F.C. Glatz
  • Danny M. Hasselbaink
  • Joost J.F.P. Luiken


Despite decades of extensive research, the transport routes, mechanisms of uptake and points of flux control of long-chain fatty acids (FA) in mammalian organs are still incompletely understood. In non-fenestratred organs such as heart and skeletal muscle, membrane barriers for blood-borne FA are the luminal and abluminal membranes of endothelial cells, the sarcolemma and the mitochondrial membranes. Transport of FA through the phospholipid bilayer of the cellular membrane is most likely accomplished by diffusion of protonated FA. Evidence is accumulating that membrane-associated proteins, such as plasmalemmal fatty acid-binding protein (FABPpm) and fatty acid translocase (FAT/CD36), either alone or in conjunction with albumin binding protein (ABP), are instrumental in enhancing the delivery of FA to the cellular membrane.

Inside the cell, cytoplasmic fatty acid-binding proteins (FABPc) are involved in diffusion of FA from the plasmalemma to the intracellular sites of conversion, such as the mitochondrial outer membrane. After conversion of FA to FACoA, the fatty acyl chain is transported across the mitochondrial inner membrane in a carnitine-mediated fashion.

Uptake and utilization of FA by muscle cells are finely tuned, most likely to avoid the intracellular accumulation of FA, as these are cytotoxic at high concentrations. On a short-term basis, net uptake is, among others, regulated by intracellular translocation of FAT from intracellular stores to the sarcolemma and by the concentration gradient of FA across the sarcolemma. The latter implies that, among others, the rate of FA utilization determines the rate of uptake. The rate of utilization is governed by a variety of factors, including malonylCoA, the ratio acetylCoA/CoA and the availability of competing substrates such as glucose, lactate, and ketone bodies. Long-term regulation of uptake and utilization is accomplished by alterations in the rate of expression of genes, encoding for FA-handling proteins. Circumstantial evidence indicates that FA themselves are able to modulate the expression of FA-handling genes via nuclear transcription factors such as peroxisome proliferator-activated receptors (PPARs).

fatty acid-binding proteins endothelium sarcolemmal transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Resh MD: Fatty acylation of proteins: New insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451: 1–16, 1991Google Scholar
  2. 2.
    Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS: Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72: 881–940, 1992Google Scholar
  3. 3.
    Van Bilsen M, Van der Vusse GJ, Reneman RS: Transcriptional regulation of metabolic processes: Implications for cardiac metabolism. Eur J Physiol 437: 2–14, 1998Google Scholar
  4. 4.
    Van Bilsen M, De Vries JE, Van der Vusse GJ: Long-term effects of fatty acids on cell viability and gene expression of neonatal cardiac myocytes. Prostagl Leukotr Essent Fatty Acids 57: 39–45, 1997Google Scholar
  5. 5.
    Van der Vusse GJ, Van Bilsen M, Glatz JFC: Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45: 279–293, 2000Google Scholar
  6. 6.
    Glatz JFC, van Nieuwenhoven FA, Luiken JJ, Schaap FG, Van der Vusse GJ: Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolisms. Prostagl Leukotr Essent Fatty Acids 57: 373–378, 1997Google Scholar
  7. 7.
    Weisiger RA, Pond S, Bass L: Hepatic uptake of protein-bound ligands: Extended sinusoidal perfusion model. Am J Physiol 261: G872–G884, 1991Google Scholar
  8. 8.
    Bassingthwaighte JB, Noodleman L, Van der Vusse GJ, Glatz JFC: Modeling of palmitate transport in the heart. Mol Cell Biochem 88: 51–58, 1989Google Scholar
  9. 9.
    Van der Vusse GJ, Glatz JFC, Van Nieuwenhoven FA, Reneman RS, Bassingthwaighte JB: Transport of long-chain fatty acids across the muscular endothelium. Adv Exp Med Biol 441: 181–191, 1998Google Scholar
  10. 10.
    Luiken JJ, Glatz JFC, Bonen A: Fatty acid transport proteins facilitate fatty acid uptake in skeletal muscle. Can J Appl Physiol 25: 333–352, 2000Google Scholar
  11. 11.
    Zakim D: Thermodynamics of fatty acid transfer. J Membr Biol 176: 101–109, 2000Google Scholar
  12. 12.
    Zakim D: Fatty acids enter cells by simple diffusion. Proc Soc Exp Biol Med 212: 5–14, 1996Google Scholar
  13. 13.
    Hamilton JA, Kamp F: How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48: 2255–2269, 1999Google Scholar
  14. 14.
    Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD: Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci USA 82: 4–8, 1985Google Scholar
  15. 15.
    Sorrentino D, Stump DD, Potter BJ, Robinson RB, White R, Kiang CL, Berk PD: Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue and gut. J Clin Invest 82: 928–935, 1988Google Scholar
  16. 16.
    Abumrad NA, El-Maghrabi MR, Amri E-Z, Lopez E, Grimaldi PA: Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. J Biol Chem 268: 17665–17668, 1993Google Scholar
  17. 17.
    Van Nieuwenhoven FA, Willemsen PM, Van der Vusse GJ, Glatz JFC: Coexpression in rat heart and skeletal muscle of four genes coding for proteins implicated in long-chain fatty acid uptake. Int J Biochem Cell Biol 31: 489–498, 1999Google Scholar
  18. 18.
    Ibrahimi A, Sfeir Z, Magharaie H, Amri EZ, Grimaldi PA, Abumrad NA: Expression of the CD36 homolog FAT in fibroblast cells: Effects on fatty acid transport. Proc Natl Acad Sci USA 93: 2646–2651, 1996Google Scholar
  19. 19.
    Schaffer JE, Lodish HF: Expression, cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436, 1994Google Scholar
  20. 20.
    Hermann T, Buchkremer F, Gosch I, Hall AM, Bernlohr DA, Stremmel W: Mouse fatty acid transport protein 4 (FATP4): Characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene 270: 31–40, 2001Google Scholar
  21. 21.
    Schnitzer JE, Sung A, Horvat R, Bravo J: Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins. Presence in many cells and tissues with a possible role in catabolism. J Biol Chem 34: 24544–24553, 1992Google Scholar
  22. 22.
    Tiruppathi C, Finnegan A, Malik AB: Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc Natl Acad Sci USA 93: 250–254, 1996Google Scholar
  23. 23.
    Popov D, Hasu M, Ghinea N, Simionescu N, Simionescu M: Cardiomyocytes express albumin binding proteins. J Mol Cell Cardiol 24: 989–1002, 1992Google Scholar
  24. 24.
    Luiken JJFP, Van Nieuwenhoven FA, America G, Van der Vusse GJ, Glatz JFC: Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: Involvement of sarcolemmal proteins. J Lipid Res 38: 745–758, 1997Google Scholar
  25. 25.
    Luiken JJFP, Turcotte LP, Bonen A: Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. J Lipid Res 40: 1007–1016, 1999Google Scholar
  26. 26.
    Ockner RK, Manning JA, Poppenhausen RB, Ho WK: A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177: 56–58, 1972Google Scholar
  27. 27.
    Vork MM, Glatz JFC, Van der Vusse GJ: Modeling intracellular fatty acid transport: Possible mechanistic role of cytoplasmic fatty acid-binding protein. Prostagl Leukotr Essent Fatty Acids 57: 11–16, 1997Google Scholar
  28. 28.
    Peeters RA, Veerkamp JH: Does fatty acid-binding protein play a role in fatty acid transport? Mol Cell Biochem 88: 45–49, 1989Google Scholar
  29. 29.
    Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ: Requirement for the heart-type fatty acid-binding protein in cardiac fatty acid utilization. FASEB J 13: 805–812, 1999Google Scholar
  30. 30.
    Schaap FG, Danneberg H, Binas B, Van der Vusse GJ, Glatz JFC: Impaired uptake and oxidation of long-chain fatty acids by cardiac myocytes of mice lacking heart-type fatty acid-binding protein (HFABP). Circ Res 85: 329–337, 1999Google Scholar
  31. 31.
    Glatz JFC, Storch J: Unravelling the significance of cellular fatty acidbinding proteins. Curr Opin Lipidol 12: 267–274, 2001Google Scholar
  32. 32.
    Storch J, Thumser AE: The fatty acid transport function of fatty acidbinding proteins. Biochim Biophys Acta 1486: 28–44, 2000Google Scholar
  33. 33.
    Spitsberg VL, Matiatashvili E, Gorewit RC: Association and coexpression of fatty-acid protein and glycoprotein CD36 in the bovine mammary gland. Eur J Biochem 230: 872–878, 1995Google Scholar
  34. 34.
    Dunphy JT, Linder ME: Signalling functions of protein palmitoylation. Biochim Biophys Acta 1436: 245–261, 1998Google Scholar
  35. 35.
    Færgeman NJ, Knudsen J: Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323: 1–12, 1997Google Scholar
  36. 36.
    Van der Vusse GJ, Reneman RS: Lipid Metabolism in muscle. In: L.B. Rowell, J.T. Shepherd (eds). Handbook of Physiology. Integration of Motor, Circulatory, Respiratory and Metabolic Control During Exercise. Am Phys Soc 1996, pp 952–994Google Scholar
  37. 37.
    Kiens B, Roemen THM, Van der Vusse GJ: Muscular long-chain fatty acid content during graded exercise in humans. J Appl Physiol 278: E352–E357, 1999Google Scholar
  38. 38.
    Bonen A, Luiken JJFP, Arumugam Y, Glatz JFC, Tandon NN: Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 12: 14501–14508, 2000Google Scholar
  39. 39.
    Distel RJ, Robinson GS, Spiegelman BM: Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. J Biol Chem 267: 5937–5941, 1992Google Scholar
  40. 40.
    Grimaldi PA, Knobel SM, Whitesell RR, Abumrad NA: Induction of aP2 gene expression by nonmetabolized long-chain fatty acids. Proc Natl Acad Sci USA 89: 10930–10934, 1992Google Scholar
  41. 41.
    Jump BD, Clarke SD, Thelen A, Liimatta M: Coordinate regulation of glycolytic and lipogenic expression by polyunsaturated fatty acids. J Lipid Res 35: 1076–1084, 1994Google Scholar
  42. 42.
    Meunier-Durmort C, Poirier H, Niot I, Forest C: Upregulation of the expression of the gene for liver fatty acid-binding protein by long-chain fatty acids. Biochem J 319: 483–487, 1996Google Scholar
  43. 43.
    Van der Lee KAJM, Vork MM, De Vries JE, Willemsen PHM, Glatz JFC, Reneman RS, Van der Vusse GJ, Van Bilsen M: Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res 41: 279–293, 2000Google Scholar
  44. 44.
    Van der Lee KAJM, Willemsen PHM, Samec S, Seydoux J, Dullo AG, Pelsers MAAL, Glatz JFC, Van der Vusse GJ, Van Bilsen M: Fastinginduced changes in the expression of genes controlling substrate metabolism in the rat heart. J Lipid Res 42: 1752–1758, 2001Google Scholar
  45. 45.
    Glatz JFC, Veerkamp JH: Postnatal development of palmitate oxidation and mitochondrial enzyme activities in rat cardiac and skeletal muscle. Biochim Biophys Acta 711: 327–335, 1982Google Scholar
  46. 46.
    Lopaschuk GD, Collins-Nakai RL, Itoi T: Developmental changes in energy substrate use by the heart. Cardiovasc Res 26: 1172–1180, 1992Google Scholar
  47. 47.
    Van Nieuwenhoven FA, Verstijnen CPHJ, Abumrad NA, Willemsen PH, Van Eys GJ, Van der Vusse GJ, Glatz JFC: Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are coexpressed in rat heart and skeletal muscles. Biochem Biophys Res Commun 207: 747–752, 1995Google Scholar
  48. 48.
    Sack MN, Disch DL, Rockman HA, Kelly DP: A role for Sp1 and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci USA 94: 6438–6443, 1997Google Scholar
  49. 49.
    Gulick T, Cresci S, Caira T, Moore DD, Kelly DP: The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91: 11012–11016, 1994Google Scholar
  50. 50.
    Gottlicher M, Widmark E, Li Q, Gustafsson JA: Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci USA 89: 4653–4657, 1992Google Scholar
  51. 51.
    Forman BM, Chen J, Evans RM: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferatoractivated receptors α and δ. Proc Natl Acad Sci USA 94: 4312–4317, 1997Google Scholar
  52. 52.
    Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM: Fatty acids and eicosanoids regulate gene expression through direct interactions with proxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci USA 94: 4318–4323, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ger J. van der Vusse
    • 1
  • Marc van Bilsen
    • 2
  • Jan F.C. Glatz
    • 2
  • Danny M. Hasselbaink
    • 2
  • Joost J.F.P. Luiken
    • 2
  1. 1.Cardiovascular Research Institute Maastricht (CARIM), Department of PhysiologyMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Department of Physiology, Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations