Studia Logica

, Volume 71, Issue 3, pp 415–442 | Cite as

Proof Nets for the Multimodal Lambek Calculus

  • Richard Moot
  • Quintijn Puite


We present a novel way of using proof nets for the multimodal Lambek calculus, which provides a general treatment of both the unary and binary connectives. We also introduce a correctness criterion which is valid for a large class of structural rules and prove basic soundness, completeness and cut elimination results. Finally, we will present a correctness criterion for the original Lambek calculus Las an instance of our general correctness criterion.

Cut Elimination Lambek Calculus Linear Logic Multimodal Lambek Calculus Proof Nets Proof Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Danos, V.: 1990, ‘La Logique Linéaire Appliquée à l'étude de Divers Processus de Normalisation (Principalement du λ-Calcul)'. Ph.D. thesis, University of Paris VII.Google Scholar
  2. Danos, V. and L. Regnier: 1989, ‘The Structure of Multiplicatives'. Archive for Mathematical Logic 28, 181-203.Google Scholar
  3. de Groote, P.: 1999, ‘An Algebraic Correctness Criterion for Intuitionistic Proof-nets'. Theoretical Computer Science 224(1–2), 115-134.Google Scholar
  4. de Groote, P. and F. Lamarche: 2002, ‘Classical non-associative Lambek calculus'. Studia Logica, in this issue, 245-278.Google Scholar
  5. Girard, J.-Y.: 1987, ‘Linear Logic'. Theoretical Computer Science 50, 1-102.Google Scholar
  6. Girard, J.-Y.: 1996, ‘Proof-Nets: The Parallel Syntax for Proof-Theory'. In: P. Agliana and A. Ursini (eds.): Logic and Algebra. New York: Marcel Dekker.Google Scholar
  7. Lafont, Y.: 1995, ‘From Proof Nets to Interaction Nets'. In: J.-Y. Girard, Y. Lafont, and L. Regnier (eds.): Advances in Linear Logic. Cambridge University Press, pp. 225-247.Google Scholar
  8. Lambek, J.: 1958, ‘The Mathematics of Sentence Structure'. American Mathematical Monthly 65, 154-170.Google Scholar
  9. Lambek, J.: 1961, ‘On the Calculus of Syntactic Types'. In: R. Jacobson (ed.): Structure of Language and its Mathematical Aspects, Proceedings of the Symposia in Applied Mathematics, Vol. XII. pp. 166-178, American Mathematical Society.Google Scholar
  10. Moortgat, M.: 1997, ‘Categorial Type Logics'. In: J. van Benthem and A. ter Meulen (eds.): Handbook of Logic and Language. Elsevier/MIT Press, Chapt. 2.Google Scholar
  11. Puite, Q.: 1998, ‘Proof Nets with Explicit Negation for Multiplicative Linear Logic'. Technical report, Department of Mathematics, Utrecht University. Preprint 1079.Google Scholar
  12. Puite, Q.: 2001, ‘Sequents and Link Graphs: Contraction Criteria for Refinements of Multiplicative Linear Logic’. Ph.D. thesis, Department of Mathematics, Utrecht University.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Richard Moot
    • 1
  • Quintijn Puite
    • 2
  1. 1.Utrecht Institute of Linguistics OTSUtrecht UniversityNetherlands
  2. 2.Department of MathematicsUtrecht UniversityNetherlands

Personalised recommendations