Antonie van Leeuwenhoek

, Volume 81, Issue 1–4, pp 529–535

Exploring the relationships between intestinal microflora and inflammatory conditions of the human bowel and spine

  • Gerald W. Tannock
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410.PubMedCrossRefGoogle Scholar
  2. Beckwith CS, Franklin CL, Hook RR, Besch-Williford CL & Riley LK (1997) Fecal PCR assay for diagnosis of Helicobacter infection in laboratory rodents. J. Clin. Microbiol. 35: 1620–1623.PubMedGoogle Scholar
  3. Berg DJ, Davidson N & Kuhn R, et al. (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J. Clin. Invest. 98: 1010–1020.PubMedGoogle Scholar
  4. Cahill RJ, Foltz CJ, Fox JG, Dangler CA, Powrie F & Schauer DB (1997) Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect. Immun. 65: 3126–3131.PubMedGoogle Scholar
  5. Chadwick VS & Chen W (1999) The intestinal microflora and inflammatory bowel disease. In: Tannock GW (Ed) Medical Importance of the Normal Microflora pp 177–221. Kluwer Academic Publishers, Dordrecht.Google Scholar
  6. D'Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M & Trinchieri G (1993) Interleukin-10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J. Exp. Med. 178: 1041–1048.PubMedCrossRefGoogle Scholar
  7. De Keyser F, Elewaut D & De Vos M et al. (1998) Bowel inflammation and the spondyloarthropathies. Rheum. Dis. Clin. North Am. 24: 785–813.PubMedCrossRefGoogle Scholar
  8. Deplancke B, Hristova KR & Oakley HA et al. (2000) Molecular ecological analysis of the succession and diversity of sulfatereducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 66: 2166–2174.PubMedCrossRefGoogle Scholar
  9. Drasar BS & Barrow PA (1985) Intestinal Microbiology. American Society for Microbiology, Washington, D.C.Google Scholar
  10. Drasar BS & Hill MJ (1974) Role of bacteria in the aetiology of cancer. In: Human Intestinal Flora pp 193–225. Academic Press, London.Google Scholar
  11. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K & Meyer zum Buschenfelde K-H (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102: 448–455.PubMedCrossRefGoogle Scholar
  12. Ebringer A (1983) The cross-tolerance hypothesis, HLA-B27 and ankylosing spondylitis. Br. J. Rheumatol. 22.Google Scholar
  13. Elson CO, Sartor RB, Tennyson GS & Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109: 1344–1367.PubMedCrossRefGoogle Scholar
  14. Finegold SM & Sutter VL (1978) Fecal flora in different populations, with special reference to diet. Am. J. Clin. Nutr. 31: S116–S122.PubMedGoogle Scholar
  15. Finegold SM, Sutter VL & Mathisen GE (1983) Normal indigenous intestinal flora. In: pp 3–31 Hentges DJ (Ed) Human Intestinal Microflora in Health and Disease. Academic Press, New York.Google Scholar
  16. Fox JG, Dewhirst FE, Fraser GJ, Paster BJ, Shames B & Murphy JC (1994) Intracellular Campylobacter-like organism from ferrets and hamsters with proliferative bowel disease is a Desulfovibrio sp. J. Clin. Microbiol. 32: 1229–1237.PubMedGoogle Scholar
  17. Francois RJ, Eulderink F & Bywaters EG (1995) Commented glossary for rheumatic spinal diseases, based on pathology. Anna. Rheum. Dis. 54: 615–625.Google Scholar
  18. Franklin CL, Riley LK, Livingstone RS, Beckwith CS, Besch-Williford CL & Hook RR (1998) Enterohepatic lesions in SCID mice infected with Helicobacter bilis. Lab. Anim. Sci. 48: 334–339.PubMedGoogle Scholar
  19. Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F & Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64: 3336–3345.PubMedGoogle Scholar
  20. Fuller R (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378.PubMedGoogle Scholar
  21. Gibson GR, Cummings JH & Macfarlane GT (1991) Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 86: 103–112.CrossRefGoogle Scholar
  22. Goldin BR & Gorbach SL (1992) Probiotics for humans. In: Fuller R (Ed) Probiotics. The Scientific Basis pp 355–376. Chapman and Hall, London.Google Scholar
  23. Groux H, O'Garra A & Bigler M et al. (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742.PubMedCrossRefGoogle Scholar
  24. Haslock I (1973) Arthritis and Crohn's disease. A family study. Ann. Rheum. Dis. 32: 479–486.PubMedGoogle Scholar
  25. Holdeman LV & Moore WE (1972) Roll-tube techniques for anaerobic bacteria. Am. J. Clin. Nutr. 25: 1314–1317.PubMedGoogle Scholar
  26. Madsen KL, Doyle JS, Tavernini ME, Jewel LD, Rennie RP & GFedorak RN (2000) Antibiotic therapy attenuates colitis in interleukin-10 gene-deficient mice. Gastroenterology 118.Google Scholar
  27. Matsuki T, Watanabe K, Tanaka R, Fukuda M & Oyaizu H (1999) Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl. Environ. Microbiol. 65: 4506–4512.PubMedGoogle Scholar
  28. Metchnikoff E (1907) The Prolongation of Life. Optimistic Studies. William Heinemann, London.Google Scholar
  29. Metchnikoff E (1908) The Nature of Man. Studies in Optimistic Philosophy. William Heinemann, London.Google Scholar
  30. Mielants H, Veys EM & Cuvelier C, et al. (1995) The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J. Rheum. 22: 2279–2284.PubMedGoogle Scholar
  31. Moore WE, Cato EP & Holdeman LV (1978) Some current concepts in intestinal bacteriology. Am. J. Clin. Nutr. 31: S33–42.PubMedGoogle Scholar
  32. Moore WE & Holdeman LV (1974) Special problems associated with the isolation and identification of intestinal bacteria in fecal flora studies. Am. J. Clin. Nutr. 27: 1450–1455.PubMedGoogle Scholar
  33. Morrissey PJ, Charrier K, Braddy S, Liggitt D & Watson JD (1993) CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Cotransfer of purified CD4+ cells prevents disease development. J. Exp. Med. 178: 237–244.PubMedCrossRefGoogle Scholar
  34. Muyzer G & Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127–141.PubMedCrossRefGoogle Scholar
  35. O'Sullivan DJ (1999) Methods of analysis of the intestinal microflora. In: Tannock GW (Ed) Probiotics: A Critical Review pp 23–44. Horizon Scientific Press., Wymondham, UK.Google Scholar
  36. Pitcher MC & Cummings JH (1996) Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 39: 1–4.PubMedGoogle Scholar
  37. Rath HC, Bender DE & Holt LC et al. (1995) Metronidazole attenuates colitis in HLA-B27/b2 microglobulin transgenic rats: a pathogenic role for anaerobic bacteria. Clin. Immunol. Immunopathol. 76.Google Scholar
  38. Rath HC, Herfath HH & Ikeda JS, et al. (1996) Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human B2 microglobulin transgenic rats. J. Clin. Invest. 98: 945–953.PubMedCrossRefGoogle Scholar
  39. Rath HC, Schultz M & Dieleman LA, et al. (1998) Selective vs. broad spectrum antibiotics in the prevention and treatment of experimental colitis in two rodent models. Gastroenterology 114: A1067.Google Scholar
  40. Rath HC, Wilson KH & Sartor RB (1999) Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect. Immun. 67: 2969–2969.PubMedGoogle Scholar
  41. Sartor RB (1997) The influence of normal microbial flora on the development of chronic mucosal inflammation. Res. Immunol. 148: 567–576.PubMedCrossRefGoogle Scholar
  42. Sartor RB, Rath HC, Lichtman SN & van Tol EA (1996) Animal models of intestinal and joint inflammation. Bailliere's Clin. Rheuma. 10: 55–76.CrossRefGoogle Scholar
  43. Sellon RK, Tonkonogy S & Schultz M et al. (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66: 5224–5231.PubMedGoogle Scholar
  44. Sghir A, Gramet G, Suau A, Rochet V, Pochart P & Dore J (2000) Quantification of bacterial groups within the human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 66: 2263–2266.PubMedCrossRefGoogle Scholar
  45. Suau A et al. (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65: 4799–4807.PubMedGoogle Scholar
  46. Tannock GW, Munro K, Harmsen HJM, Welling GW, Smart J & Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66: 2578–2588.PubMedCrossRefGoogle Scholar
  47. Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Ng J, Munro K & Alatossava T (1999) Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S-23S rRNA gene intergenic spacer region sequence comparisons. Appl. Environ. Microbiol. 65: 4264–4267.PubMedGoogle Scholar
  48. Taylor J & Parkes RJ (1985) Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J. Microbiol. 131: 631–642.CrossRefGoogle Scholar
  49. Vaughan EE, Schut F, Heilig HGHJ, Zoetendal EG, De Vos WM & Akkermans ADL (2000) A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol. 1: 1–12.PubMedGoogle Scholar
  50. Welling GW, Elfferich P, Raangs GC, Wildeboer-Veloo AC, Jansen GJ & Degener JE (1997) 16S ribosomal RNA-targeted oligonucleotide probes for monitoring of intestinal tract bacteria. Scand. J. Gastroenterol. 222: 17–19.Google Scholar
  51. Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedGoogle Scholar
  52. Zoetendal EG, Akkermans AD & De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854–3859.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Gerald W. Tannock
    • 1
  1. 1.Department of MicrobiologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations