Journal of Mammalian Evolution

, Volume 5, Issue 3, pp 237–265 | Cite as

The Phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the Relationship of Eurotamandua to the Vermilingua

  • Timothy J. Gaudin
  • Daniel G. Branham
Article

Abstract

A cladistic investigation of the phylogenetic relationships among the three extant anteater genera and the three undoubted extinct myrmecophagid genera is performed based upon osteological characteristics of the skull and postcranial skeleton. One hundred seven discrete morphological characters are analyzed using the computer program PAUP. Characters are polarized via comparison to the successive xenarthran outgroups Tardigrada (represented by the living sloth Bradypus) and Cingulata (represented by the recent armadillos Dasypus and Euphractus). The analysis results in a single most-parsimonious tree (TL = 190, CI = 0.699, RI = 0.713). The tree corroborates the monophyly of the subfamilies Cyclopinae and Myrmecophaginae, the former including the extant Cyclopes and the Pliocene genus Palaeomyrmidon. Within the Myrmecophaginae the Miocene genus Protamandua is the sister taxon to a clade including the remaining three genera. The recent Tamandua is in turn the sister taxon to the extant Myrmecophaga plus the Pliocene genus Neotamandua. Contrary to the suggestions of recent authors, weak support is provided for the taxonomic distinctiveness of the latter genus from the recent Myrmecophaga. The monophyly of the Myrmecophagidae is supported by 15 unequivocal synapomorphies. The monophyly of the Cyclopinae and Myrmecophaginae is supported by 3 and 13 unambiguous synapomorphies, respectively. The enigmatic Eocene genus Eurotamandua, from the Messel fauna of Germany, is coded for the 107 morphological characters above and included in two subsequent PAUP analyses. The palaeanodont Metacheiromys is also added to these two analyses as a nonxenarthran outgroup to test for the possibility that Eurotamandua lies outside the Xenarthra. In the first analysis, Eurotamandua is constrained a priori to membership in the Vermilingua. The single most-parsimonious tree (TL = 224, CI = 0.618) that results places Eurotamandua as the sister group to the remaining anteater genera, contra Storch and Habersetzer's (1991) assignment of Eurotamandua to the vermilinguan subfamily Myrmecophaginae. Eurotamandua shares six unequivocal synapomorphies with other anteaters, including the absence of teeth and the presence of a lateral tuberosity on the fifth metatarsal. The remaining vermilinguans are united by 11 unequivocal synapomorphies, plus an additional 10 ambiguous synapomorphies. In the second analysis, the position of Eurotamandua is unconstrained. The resulting single most-parsimonious tree (TL = 219, CI = 0.632) places Eurotamandua outside Vermilingua as the sister group to the Pilosa (Vermilingua plus Bradypus). The monophyly of this node is supported by four unambiguous synapomorphies in the unconstrained analysis. Further manipulation of this second analysis shows that placement of Eurotamandua as the sister group to the Xenarthra or to the Palaeanodonta adds three steps to the shortest tree but is more parsimonious than its placement as a sister group to the Vermilingua is the previous analysis. The addition of pangolins to the analysis does little to alter the major phylogenetic conclusions of the study. The allocation of Eurotamandua to the Xenarthra, but as a sister group to the Pilosa, is a novel arrangement which leaves open the biogeographic question of how a xenarthran reached Western Europe during the Eocene.

Xenarthra anteaters Eurotamandua phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Ameghino, F. (1904). Nuevas especies de mamíferos Cretáceos y Terciarios de la República Argentina. An. Soc. Cien. Argentina 56–58: 277–278.Google Scholar
  2. Carlini, A. A., Scillato-Yané, G. J., Vizcaíno, S. F., and Dozo, M. T. (1992). Un singular Myrmecophagidae (Xenarthra, Vermilingua) de Edad Colhuehuapense (Oligoceno Tardio-Mioceno Temprano) de Patagonia, Argentina. Ameghiniana 29: 176.Google Scholar
  3. Engelmann, G. (1985). The phylogeny of the Xenarthra. In: The Ecology and Evolution of Armadillos, Sloths, and Vermilinguas, G. G. Montgomery, ed., pp. 51–64, Smithsonian Institution Press, Washington, DC.Google Scholar
  4. Flower, W. H. (1882). On the mutual affinities of the animals composing the order Edentata. Proc. Zool. Soc. London 1882: 358–367.Google Scholar
  5. Flynn, J. J., and Swisher, C. C., III (1995). Cenozoic South American land mammal ages: Correlation to global geochronologies. SEPM Spec. Publ. 54: 317–333.Google Scholar
  6. Forbes, W. A. (1882). On some points in the anatomy of the great anteater (Myrmecophaga jubata). Proc. Zool. Soc. London 1882: 287–302.Google Scholar
  7. Gaudin, T. J. (1993). Phylogeny of the Tardigrada (Mammalia, Xenarthra) and the Evolution of Locomotor Function in the Xenarthra, Ph.D. thesis, University of Chicago, Chicago.Google Scholar
  8. Gaudin, T. J. (1995). The ear region of edentates and the phylogeny of the Tardigrada (Mammalia, Xenarthra). J. Vert. Paleont. 15: 672–705.Google Scholar
  9. Grassé, P. P. (1955). Ordre des Pholidotes. In: Traité de Zoologie, Vol. 17. Mammifères, P. P. Grassé, ed., pp. 1267–1282, Masson et Cie, Paris.Google Scholar
  10. Heissig, K. (1982). Ein Edentate aus dem Oligozän Süddeutschlands. Mitt. Bayer. Staatssamml. Paläontol. Hist. Geol. 22: 91–96.Google Scholar
  11. Hirschfeld, S. E. (1976). A new fossil anteater (Edentata, Mammalia) from Colombia, S. A. and evolution of the Vermilingua. J. Paleontol. 50: 419–432.Google Scholar
  12. Jones, F. W. (1952). Some adaptations of the mammalian pes in response to arboreal habits. Proc. Zool. Soc. London 123: 33–41.Google Scholar
  13. Kingdon, J. (1971). East African Mammals, Vol. 1, University of Chicago Press, Chicago.Google Scholar
  14. McKenna, M. C. (1987). Molecular and morphological analysis of high-level mammalian interrelationships. In: Molecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 57–93, Cambridge University Press, Cambridge.Google Scholar
  15. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  16. Patterson, B., Segall, W., Turnbull, W. D., and Gaudin, T. J. (1992). The ear region in xenarthrans (= Edentata, Mammalia). Part II. Pilosa (sloths, anteaters), palaeanodonts, and a miscellany. Fieldiana Geol.n.s. 24: 1–79.Google Scholar
  17. Pocock, R. I. (1924). The external characters of the South American edentates. Proc. Zool. Soc. London 65: 983–1031.Google Scholar
  18. Rose, K. D., and Emry, R. J. (1993). Relationships of Xenarthra, Pholidota, and fossil “edentates”: The morphological evidence. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek and M. C. McKenna, eds., pp. 81–102, Springer-Verlag, New York.Google Scholar
  19. Rovereto, C. (1914). Los estratos araucanos y sus fósiles. Anal. Mus. Nac. Buenos Aires 25: 1–249.Google Scholar
  20. Schoch, R. M. (1984). Revision of Metacheiromys Wortman, 1903 and a review of the Palaeanodonta. Postilla 192: 1–28.Google Scholar
  21. Shoshani, J., McKenna, M. C., Rose, K. D., and Emry, R. J. (1997). Eurotamandua is a pholidotan not a xenarthran. J. Vert. Paleont. 17: 76A.Google Scholar
  22. Simpson, G. G. (1931). Metacheiromys and the Edentata. Bull. Am. Mus. Nat. Hist. 59: 295–381.Google Scholar
  23. Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. His. 85: 1–350.Google Scholar
  24. Storch, G. (1981). Eurotamandua joresi, ein Myrmecophagidae aus dem Eozän der “Grube Messel” bei Darmstadt (Mammalia, Xenarthra). Senckenb. leth. 61: 247–289.Google Scholar
  25. Storch, G., and Habersetzer, J. (1991). Rückverlagerte Choanen und akzessorische Bulla tympanica bei rezenten Vermilingua und Eurotamandua aus dem Eozän von Messel (Mammalia: Xenarthra). Z. Säugetierkunde 56: 257–271.Google Scholar
  26. Storch, G., and Haubold, H. (1989). Additions to the Geiseltal mammalian faunas, middle Eocene: Didelphidae, Nyctitheriidae, Myrmecophagidae. Palaeovert. 19: 95–114.Google Scholar
  27. Swofford, D. L. (1993). PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1, Smithsonian Institution, Washington, DC.Google Scholar
  28. Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 315–374, Plenum Press, New York.Google Scholar
  29. Szalay, F. S., and Schrenk, F. (1994). Middle Eocene Eurotamandua and the early differentiation of the Edentata. J. Vert. Paleontol. 14: 48A.Google Scholar
  30. Vizcaíno, S. F., and Scillato-Yané, G. J. (1995). An Eocene tardigrade (Mammalia, Xenarthra) from Seymour Island, West Antarctica. Antarc. Sci. 7: 407–408.Google Scholar
  31. Weber, M. (1928). Die Säugetiere, Gustav Fischer, Jena.Google Scholar
  32. Wetzel, R. (1985). The identification and distribution of recent Xenarthra (= Edentata). In: The Ecology and Evolution of Armadillos, Sloths, and Vermilinguas, G. G. Montgomery, ed., pp. 5–21, Smithsonian Institution Press, Washington, DC.Google Scholar
  33. Wiley, E. O., Siegel-Causey, D., Brooks, D. R., and Funk, V. A. (1991). The compleat cladist. A primer of phylogenetic procedures. Univ. Kans. Mus. Nat. Hist. Spec. Publ. 19: 1–158.Google Scholar
  34. Winge, H. (1941). The Interrelationships of the Mammalian Genera, C. A. Reitzels Forlag, Copenhagen.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Timothy J. Gaudin
  • Daniel G. Branham

There are no affiliations available

Personalised recommendations