Journal of Electroceramics

, Volume 8, Issue 2, pp 129–137 | Cite as

An Overview of Rapidly Prototyped Piezoelectric Actuators and Grain-Oriented Ceramics

  • M. Allahverdi
  • A. Hall
  • R. Brennan
  • M.E. Ebrahimi
  • N. Marandian Hagh
  • A. Safari

Abstract

Rapid prototyping (RP) has been used to fabricate a series of piezoelectric actuators, including spiral and tube actuators, to study the actuation mechanism in these geometries, and to obtain enhanced properties. PZT spiral actuators showed large displacement in mm range, and moderate blocking force. Unimorph spirals (PZT/metal shim) and dual-material (piezoelectric/electrostrictive) PMN-PT spirals were also prototyped and characterized. Tube actuators with inward and outward wall curvature showed slight improvement in axial and radial displacements compared to conventional straight-walled tube actuators. In order to improve the performance of ceramic actuators with polycrystalline microstructures, grain-oriented ceramics of bismuth titanate, lead metaniobate, and PMN-PT were investigated. Texturing was achieved by incorporating anisometric seeds into RP feedstock, aligning them during fabrication, and growing the seeds (templates) at elevated temperatures. Synthesis of anisometric seeds and pertinent processing conditions of the textured ceramics are presented. The feasibility of making net shape single crystal components was also explored. Single crystals of 0.65PMN-0.35PT were grown in FDC components using embedded (111) and (110) SrTiO3 seeds at 1250°C.

rapid prototyping actuators piezoelectric grain orientation single crystal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.H. Haertling, Am. Ceram. Soc. Bull., 73, 93 (1994).Google Scholar
  2. 2.
    F. Mohammadi, A. Kholkin, B. Jadidian, and A. Safari, Applied Physics Letters, 75, 2488 (1999).Google Scholar
  3. 3.
    Q.M. Wang, Q. Zhang, B. Xu, R. Liu, and L.E. Cross, Journal of Applied Physics, 86, 3352 (1999).Google Scholar
  4. 4.
    A. Safari, S.C. Danforth, M.A. Jafari, M. Allahverdi, B. Jadidian, F. Mohammadi, N. Vankataraman, and S. Rangarajan, in Proceedings of the 9th European Conference on Rapid Prototyping and Manufacturing, edited by R.I. Campbell (University of Nottingham, Nottingham, UK, 2000), p. 247.Google Scholar
  5. 5.
    A. Safari and S.C. Danforth, in Proceedings of the 11th IEEE International Symposium on the Applications of Ferroelectrics, edited by E. Colla, D. Damjanovic, and N. Setter, (IEEE-UFFC, New Jersey, 1998), p. 229.Google Scholar
  6. 6.
    A. Bandyopadhyay, R.K. Panda, T.F. McNulty, F. Mohammadi, S.C. Danforth, and A. Safari, Rapid Prototyping Journal, 4, 37 (1998).Google Scholar
  7. 7.
    A. Safari and M. Allahverdi, Ceram. Eng. Sci. Proc., 22, 473 (2001).Google Scholar
  8. 8.
    F. Mohammadi, Ph.D. Thesis, Department of Ceramic and Materials Engineering, Rutgers University, New Jersey, USA (2001).Google Scholar
  9. 9.
    F. Mohammadi, A. Kholkin, S.C. Danforth, and A. Safari, in Proceedings of the 11th IEEE International Symposium on the Applications of Ferroelectrics, edited by E. Colla, D. Damjanovic, and N. Setter (IEEE-UFFC, New Jersey, 1998), p. 273.Google Scholar
  10. 10.
    S.A. Wise, Sensors and Actuators A, 69, 33 (1998).Google Scholar
  11. 11.
    Q. M. Zhang, H. Wang, and L.E. Cross, J. Mater. Sci., 28, 3962 (1993).Google Scholar
  12. 12.
    Y. Sugawara, K. Onitsuka, S. Yoshikawa, Q.C. Xu, R.E. Newnham, and K. Uchino, J. Am. Ceram. Soc., 75, 996 (1992).Google Scholar
  13. 13.
    A.M. Umarji, A.L. Kholkin, T.F. McNulty, S.C. Danforth, and A. Safari, in Proceedings of the 11th IEEE International Symposium on the Applications of Ferroelectrics, edited by E. Colla, D. Damjanovic, and N. Setter (IEEE-UFFC, New Jersey, 1998), p. 269.Google Scholar
  14. 14.
    T.W. Chou, B.A. Cheeseman, A. Safari, and S.C. Danforth, Ceramic Eng. Sci. Proc., 22, 497 (2001).Google Scholar
  15. 15.
    Q.M. Zhang, H. Wang, and L.E. Cross, J. Mater. Sci., 28, 3962 (1993).Google Scholar
  16. 16.
    J. Chen, Q.M. Zhang, L.E. Cross, and C.M. Trottier, in Proceedings of International Conference on Intelligent Materials (ICIM) 1994, 5–8 June 1994, Williamsburg, VA, p. 316.Google Scholar
  17. 17.
    M. Allahverdi and A. Safari, J. Eur. Ceram. Soc., 21, 1485 (2001).Google Scholar
  18. 18.
    M. Allahverdi, B. Jadidian, B. Harper, S. Rangarajan, M. Jafari, S.C. Danforth, and A. Safari, in Proceedings of 12th IEEE International Symposium on Applications of Ferroelectrics, edited by S.K. Streiffer, B.J. Gibbons, and T. Tsurumi, (IEEE-UFFC, New Jersey, 2001), p. 381.Google Scholar
  19. 19.
    J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 82, 921 (1999).Google Scholar
  20. 20.
    M. Holmes, R.E. Newnham, and L.E. Cross, Am. Ceram. Soc. Bull., 58, 872 (1979).Google Scholar
  21. 21.
    M.M. Seabaugh, I.H. Kerscht, and G.L. Messing, J. Am. Ceram. Soc., 80, 1181 (1997).Google Scholar
  22. 22.
    P.W. Rehrig, G.L. Messing, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 83, 2654 (2000).Google Scholar
  23. 23.
    A. Fouskova and L.E. Cross, J. Appl. Phys., 41, 2834 (1970).Google Scholar
  24. 24.
    P. Eyraud, L. Eyraud, P. Gonnard, D. Noterman, and M. Troccaz, in Proceedings of 6th IEEE International Symposium on Applications of Ferroelectrics, edited by B.M. Kulwicki, A. Amin, and A. Safari (IEEE-UFFC, New Jersey, 1996), p. 410.Google Scholar
  25. 25.
    S.-E. Park and T.R. Shrout, J. Appl. Phys., 82, 1804 (1997).Google Scholar
  26. 26.
    S.-E. Park and T.R. Shrout, Mater. Res. Innovations, 1, 20 (1997).Google Scholar
  27. 27.
    G. Xu, H. Luo, Y. Guo, Y. Gao, H. Xu, Z. Qi, W. Zhong, and Z. Yin, Solid State Communications, 120, 321 (2001).Google Scholar
  28. 28.
    M. Allahverdi, B. Jadidian, Y. Ito, and A. Safari, in Proceedings of 12th IEEE International Symposium on Applications of Ferroelectrics, edited by S.K. Streiffer, B.J. Gibbons, and T. Tsurumi (IEEE-UFFC, New Jersey, 2001), p. 385.Google Scholar
  29. 29.
    K. Nonaka, M. Allahverdi, and A. Safari, in Innovative Processing and Synthesis of Ceramics, Glasses, and Composites V, Ceramic Transactions, Vol. 129, 199 (2002).Google Scholar
  30. 30.
    K. Watari, B. Brahmaroutu, G.L. Messing, S. Trolier-McKinstry, and S.C. Cheng, J. Mater. Res., 15, 846 (2000).Google Scholar
  31. 31.
    F.K. Lotgering, J. Appl. Phys., 39, 2268 (1968).Google Scholar
  32. 32.
    A. Khan, F.A. Meschke, T. Lao, A.M. Scotch, H.M. Chan, and M.P. Harmer, J. Am. Ceram. Soc., 82, 2958 (1999).Google Scholar
  33. 33.
    T. Li, S. Wu, A. Khan, A.M. Scotch, H.M. Chan, and M.P. Harmer, J. Mater. Res., 8, 3189 (1999).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Allahverdi
    • 1
  • A. Hall
    • 1
  • R. Brennan
    • 1
  • M.E. Ebrahimi
    • 1
  • N. Marandian Hagh
    • 1
  • A. Safari
    • 1
  1. 1.Department of Ceramic and Materials Engineering, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations