Journal of Mammalian Evolution

, Volume 5, Issue 2, pp 127–182

Phylogenetic Relationships Between the Orders Artiodactyla and Cetacea: A Combined Assessment of Morphological and Molecular Evidence

  • W. Patrick Luckett
  • Nancy Hong


A character analysis of selected conservative morphological traits from extant and fossil artiodactyls and cetaceans was combined with a similar analysis of conservative nucleotide positions from the complete mitochondrial cytochrome b sequences of available extant artiodactyls, cetaceans, sirenians, perissodactyls, and other mammals. This combined analysis focuses on the evidence that supports conflicting hypotheses of artiodactyl monophyly, including the affinities of hippopotamids and the monophyly or paraphyly of odontocete cetaceans. Highly conserved morphological traits of the astragalus and deciduous dentition provide strong corroboration of artiodactyl monophyly, including extant and fossil hippopotamids. In contrast, cytochrome b gene sequences are incapable of confirming this monophyly, due to excessive homoplasy of nucleotide and amino acid traits within extant Eutheria. In like manner, highly conserved and uniquely derived morphological features of the skull and auditory regions provide robust corroboration of Odontoceti monophyly, including extant and fossil physeteroids. Several nucleotide similarities do exist between physeteroids and mysticetes; however, most are either silent third-position transversions or occur also in two or more odontocete families. We suggest that increased taxon sampling, combined with functional considerations of amino acids and their secondary structure in protein-coding genes, are essential requirements for the phylogenetic interpretations of molecules at higher taxonomic levels, especially when they conflict with well-supported hypotheses of mammalian phylogeny, corroborated by uniquely derived morphological traits from extant and fossil taxa.

Artiodactyla hippopotamuses Cetacea morphology cytochrome b evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, J., and Hasegawa, M. (1996). Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42: 459–469.Google Scholar
  2. Andrews, C. W. (1906). A Descriptive Catalogue of the Tertiary Vertebrata of the Fayum, Egypt, British Museum (Natural History), London.Google Scholar
  3. Arnason, U., and Gullberg, A. (1994). Relationship of baleen whales established by cytochrome b gene sequence comparison. Nature 367: 726–728.Google Scholar
  4. Arnason, U., and Gullberg, A. (1996). Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol. Biol. Evol. 13: 407–417.Google Scholar
  5. Arnason, U., Bodin, K., Gullberg, A., Ledje, C., and Mouchaty, S. (1995). A molecular view of pinniped relationships with particular emphasis on the true seals. J. Mol. Evol. 40: 78–85.Google Scholar
  6. Arnason, U., Xu, X., and Gullberg, A. (1996). Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on nonchimeric sequences. J. Mol. Evol. 42: 145–152.Google Scholar
  7. Arnason, U., Gullberg, A., and Janke, A. (1997). Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and ferungulates. Mol. Biol. Evol. 14: 762–768.Google Scholar
  8. Baker, R. J., Taddei, V. A., Hudgeons, J. L., and Van den Bussche, R. A. (1994). Systematic relationships within Chiroderma (Chiroptera: Phyllostomidae) based on cytochrome b sequence variation. J. Mammal. 75: 321–327.Google Scholar
  9. Baker, R. J., Van den Bussche, R. A., Wright, A. J., Wiggins, L. E., Hamilton, M. J., Reat, E. P., Smith, M. H., Lomakin, M. D., and Chesser, R. K. (1996). High levels of genetic change in rodents of Chernobyl. Nature 380: 707–708.Google Scholar
  10. Barklow, W. (1995). Hippo talk. Nat. Hist. 104(5): 54.Google Scholar
  11. Barnes, L. G. (1984). Whales, dolphins and porpoises: Origin and evolution of the Cetacea. In: Mammals, Notes for a Short Course, P. D. Gingerich and C. E. Badgley, eds., pp. 139–154, University of Tennessee, Studies in Geology, Vol. 8.Google Scholar
  12. Barnes, L. G. (1990). The fossil record and evolutionary relationships of the genus Tursiops. In: The Bottlenose Dolphin, S. Leatherwood and R. R. Reeves, eds., pp. 3–26, Academic Press, San Diego.Google Scholar
  13. Barnes, L. G., and McLeod, S. A. (1984). The fossil record and phyletic relationships of gray whales. In: The Gray Whale, Eschrichtius robustus, M. L. Jones, S. L. Swartz, and S. Leatherwood, eds., pp. 3–32, Academic Press, Orlando, FL.Google Scholar
  14. Barnes, L. G., Domning, D. P., and Ray, C. E. (1985). Status of studies on fossil marine mammals. Mar. Mamm. Sci. 1: 15–53.Google Scholar
  15. Black, C. C. (1978). Anthracotheriidae. In: Evolution of African Mammals, V. J. Maglio and H. B. S. Cooke, eds., pp. 423–434, Harvard University Press, Cambridge, MA.Google Scholar
  16. Blainville, H. M. D. de (1839–1864). Ostéographie ou Description Iconographique Comparée du Squelette et du Système Dentaire des Mammifères Récents et Fossiles pour Servir de Base a la Zoologie et a la Géologie, Tome Quatrième, J. B. Baillière et Fils, Paris.Google Scholar
  17. Buntjer, J. B., Hoff, I. A., and Lenstra, J. A. (1997). Artiodactyl interspersed DNA repeats in cetacean genomes. J. Mol. Evol. 45: 66–69.Google Scholar
  18. Butler, P. M. (1969). Insectivores and bats from the Miocene of East Africa: New material. In: Fossil Vertebrates of Africa, L. S. B. Leakey, ed., pp. 1–37, Academic Press, New York.Google Scholar
  19. Butler, P. M. (1984). Macroscelidea, Insectivora, and Chiroptera from the Miocene of East Africa. Palaeovertebrata (Montpellier) 14: 117–200.Google Scholar
  20. Chikuni, K., Mori, Y., Tabata, T., Saito, M., Monma, M., and Kosugiyama, M. (1995). Molecular phylogeny based on the k-casein and cytochrome b sequences in the mammalian suborder Ruminantia. J. Mol. Evol. 41: 859–866.Google Scholar
  21. Colbert, E. H. (1935). Distributional and phylogenetic studies on Indian fossil mammals. IV. The phylogeny of the Indian Suidae and the origin of the Hippopotamidae. Am. Mus. Novitates 799: 1–24.Google Scholar
  22. Collura, R. V., and Stewart, C. B. (1995). Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378: 485–489.Google Scholar
  23. Collura, R. V., Auerbach, M. R., and Stewart, C. B. (1996). A quick, direct method that can differentiate expressed mitochondrial genes from their nuclear pseudogenes. Curr. Biol. 6: 1337–1339.Google Scholar
  24. Cope, E. D. (1888–1889). The Artiodactyla. Am. Nat. 22: 1079–1095; 23: 111–136.Google Scholar
  25. Coryndon, S. (1977). The taxonomy and nomenclature of the Hippopotamidae (Mammalia, Artiodactyla) and a description of two new fossil species. Proc. Kon. Ned. Akad. von Wetensch. B 80: 61–88.Google Scholar
  26. Coryndon, S. (1978). Hippopotamidae. In: Evolution of African Mammals, V. J. Maglio and H. B. S. Cooke, eds., pp. 483–495, Harvard University Press, Cambridge, MA.Google Scholar
  27. Cracraft, J., and Helm-Bychowski, K. (1991). Parsimony and phylogenetic inference using DNA sequences: Some methodological strategies. In: Phylogenetic Analysis of DNA Sequences, M. Miyamoto and J. Cracraft, eds., pp. 184–220, Oxford University Press, New York.Google Scholar
  28. Cranford, T. W., Amundin, M., and Norris, K. S. (1996). Functional morphology and homology in the odontocete nasal complex: Implications for sound generation. J. Morphol. 228: 223–285.Google Scholar
  29. Cuvier, G. (1822). Recherches sur les Ossemens Fossiles, où l'on Rétablit Les Caractères de Plusieurs Animaux dont les Révolutions du Globe ont Détruit les Espèces, Nouvelle Édition, Tome Deuxième, Ire Partie. G. Dufour et E. D'Ocagne, Libraires, Paris.Google Scholar
  30. Dewalt, T. S., Sudman, P. D., Hafner, M. S., and Davis, S. K. (1993). Phylogenetic relationships of pocket gophers (Cratogeomys and Pappogeomys) based on mitochondrial DNA cytochrome b sequences. Mol. Phylogenet. Evol. 2: 193–204.Google Scholar
  31. Eltringham, S. K. (1993). The pygmy hippopotamus (Hexaprotodon liberiensis). In: Pigs. Peccaries, and Hippos. Status Survey and Conservation Action Plan, W. L. R. Oliver, ed., pp. 55–60, IUCN, Gland, Switzerland.Google Scholar
  32. Emlong, D. R. (1966). A new archaic cetacean from the Oligocene of northwest Oregon. Bull. Mus. Nat. Hist., Univ. Oreg. 3: 1–51.Google Scholar
  33. Erfurt, J., and Sudre, J. (1996). Eurodexeinae, eine neue Unterfamilie der Artiodactyla (Mammalia) aus dem Unter-und Mitteleozän Europas. Palaeovertebrata (Montpellier) 25: 371–390.Google Scholar
  34. Estes, R. D. (1991). The Behavior Guide to African Mammals, University of California Press, Berkeley.Google Scholar
  35. Faulkes, C. G., Bennett, N. C., Bruford, M. W., O'Brien, H. P., Aguilar, G. H., and Jarvis, J. U. M. (1997). Ecological constraints drive social evolution in the African mole-rats. Proc. Roy. Soc. Lond. B 264: 1619–1627.Google Scholar
  36. Felsenstein, J. (1978). Cases in which parsimony or compatibility methods wll be positively misleading. Syst. Zool. 27: 401–410.Google Scholar
  37. Filhol, M. H. (1880). Etude des Mammifères fossiles de Saint-Gérand le Puy (Allier). Bibl. L'Ecole Haut. Etudes Sci. Nat. 20: 1–86.Google Scholar
  38. Fleischer, G. (1976). Hearing in extinct cetaceans as determined by cochlear structure. J. Paleontol. 50: 133–152.Google Scholar
  39. Fordyce, R. E., and Barnes, L. G. (1994). The evolutionary history of whales and dolphins. Annu. Rev. Earth Planet. Sci. 22: 419–455.Google Scholar
  40. Gatesy, J. (1997). More DNA support for a Cetacea/Hippopotamidae clade: The blood-clotting protein gene gamma-fibrinogen. Mol. Biol. Evol. 14: 537–543.Google Scholar
  41. Gatesy, J., Hayashi, C., Cronin, M. A., and Arctander, P. (1996). Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13: 954–963.Google Scholar
  42. Gatesy, J., Amato, G., Vrba, E., Schaller, G., and DeSalle, R. (1997). A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol. Phylogenet. Evol. 7: 303–319.Google Scholar
  43. Geisler, J. H., and Luo, Z. (1996). The petrosal and inner ear of Herpetocetus sp. (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. J. Paleontol. 70: 1045–1066.Google Scholar
  44. Geisler, J. H., and O'Leary, M. A. (1997). A phylogeny of Cetacea, Artiodactyla, Perissodactyla, and archaic ungulates: The morphological evidence. J. Vert. Paleontol. 17(3) (Suppl.): 48A.Google Scholar
  45. Gentry, A. W., and Hooker, J. J. (1988). The phylogeny of the Artiodactyla. In: The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 235–272, Clarendon Press, Oxford.Google Scholar
  46. Gingerich, P. D., and Russell, D. E. (1981). Pakicetus inachus, a new archaeocete (Mammalia, Cetacea) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 25: 235–246.Google Scholar
  47. Gingerich, P. D., Smith, B. H., and Simons, E. L. (1990). Hind limbs of Eocene Basilosaurus: Evidence of feet in whales. Science 249: 154–157.Google Scholar
  48. Graur, D., and Higgins, D. G. (1994). Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol. 11: 357–364.Google Scholar
  49. Groves, P., and Shields, G. F. (1996). Phylogenetics of the Caprinae based on cytochrome b sequence. Mol. Phylogenet. Evol. 5: 467–476.Google Scholar
  50. Harrison, T. (1997). The anatomy, paleobiology, and phylogenetic relationships of the Hippopotamidae (Mammalia, Artiodactyla) from the Manonga Valley, Tanzania. In: Neogene Paleontology of the Manonga Valley, Tanzania, T. Harrison, ed., pp. 137–190, Plenum Press, New York.Google Scholar
  51. Hartenberger, J.-L. (1986). Hypothèse paléontologique sur l'origine des Macroscelidea (Mammalia). C.R. Acad. Sci. Paris 302: 247–249.Google Scholar
  52. Hasegawa, M., and Adachi, J. (1996). Phylogenetic position of cetaceans relative to artiodactyls: Reanalysis of mitochondrial and nuclear sequences. Mol. Biol. Evol. 13: 710–717.Google Scholar
  53. Hasegawa, M., Adachi, J., and Milinkovitch, M. C. (1997). Novel phylogeny of whales supported by total molecular evidence. J. Mol. Evol. 44(Suppl. 1): S117–S120.Google Scholar
  54. Hayssen, V., Van Tienhoven, A., and Van Tienhoven, A. (1993). Asdell's Patterns of Mammalian Reproduction, Cornell University Press, Ithaca, NY.Google Scholar
  55. Hennig, W. (1966). Phylogenetic Systematics, University of Illinois Press, Urbana.Google Scholar
  56. Heyning, J. E. (1989). Comparative facial anatomy of beaked whales (Ziphiidae) and a systematic revision among the families of extant Odontoceti. Contrib. Sci. Nat. Hist. Mus. L.A. County 405: 1–64.Google Scholar
  57. Heyning, J. E. (1995). Masters of the Ocean Realm: Whales, Dolphins, and Porpoises, University of Washington Press, Seattle.Google Scholar
  58. Heyning, J. E. (1997). Sperm whale phylogeny revisited: Analysis of the morphological evidence. Mar. Mammal Sci. 13: 60–77.Google Scholar
  59. Heyning, J. E., and Mead, J. G. (1990). Evolution of the nasal anatomy of cetaceans. In: Sensory Abilities of Cetaceans, J. Thomas and R. Kastelein, eds., pp. 67–79, Plenum Press, New York.Google Scholar
  60. Hillis, D. M. (1987). Molecular versus morphological approaches to systematics. Annu. Rev. Ecol. Syst. 18: 23–42.Google Scholar
  61. Honeycutt, R. L., and Adkins, R. M. (1993). Higher level systematics of eutherian mammals: An assessment of molecular characters and phylogenetic hypotheses. Annu. Rev. Ecol. Syst. 24: 279–305.Google Scholar
  62. Hooijer, D. A. (1942). On the supposed hexaprotodont milk dentition in Hippopotamus amphibius L. Zool. Meded. Mus. Leiden 24: 187–196.Google Scholar
  63. Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., and Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci. USA 92: 532–536.Google Scholar
  64. Howell, A. B. (1930). Aquatic Mammals, Charles C Thomas, Springfield, IL.Google Scholar
  65. Irwin, D. M., and Arnason, U. (1994). Cytochrome b gene of marine mammals: Phylogeny and evolution. J. Mammal. Evol. 2: 37–55.Google Scholar
  66. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32: 128–144.Google Scholar
  67. Janis, C. M., and Scott, K. M. (1987). The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. Am. Mus. Novitates 2893: 1–85.Google Scholar
  68. Janke, A., Gemmell, N. J., Feldmaier-Fuchs, G., von Haeseler, A., and Paabo, S. (1996). The mitochondrial genome of a monotreme—The playtpus (Ornithorhynchus anatinus). J. Mol. Evol. 42: 153–159.Google Scholar
  69. Karlsen, K. (1962). Development of tooth germs and adjacent structures in the whalebone whale [Balaenoptera physalus (L.)]. Hvalradets Skrifter 45: 1–56.Google Scholar
  70. Kellogg, R. (1928). The history of whales—Their adaptation to life in the water. Q. Rev. Biol. 3: 29–76, 174–208.Google Scholar
  71. Kellogg, R. (1934). The Patagonian fossil whalebone whale, Cetotherium moreni (Lydekker). Carnegie Inst. Wash. Publ. 447: 63–81.Google Scholar
  72. Kellogg, R. (1936). A review of the Archaeoceti. Publ. Carnegie Inst. Wash. 482: 1–366.Google Scholar
  73. Ketten, D. R. (1992). The marine mammal ear: Specializations for aquatic audition and echolocation. In: The Evolutionary Biology of Hearing, D. B. Webster, R. R. Fay, and A. N. Popper, eds., pp. 717–750, Springer-Verlag, New York.Google Scholar
  74. Klingel, H. (1995). Fluctuating fortunes of the river horse. Nat. Hist. 104(5): 46–56.Google Scholar
  75. Kükenthal, W. (1891). On the adaptation of mammals to aquatic life. Ann. Mag. Nat. Hist. Ser. 6, 7: 153–179.Google Scholar
  76. Kuzmin, A. A. (1976). Embryogenesis of the osseous skull of the sperm whale (Physeter macrocephalus, Linnaeus, 1758). In: Investigations on Cetacea, Vol. VII, G. Pilleri, ed., pp. 187–202, Institute of Brain Anatomy, University of Berne, Berne, Switzerland.Google Scholar
  77. Lara, M. C., Patton, J. L., and Da Silva, M. N. F. (1996). The simultaneous diversification of South American echimyid rodents (Hystricognathi) based on complete cytochrome b sequences. Mol. Phylogenet. Evol. 5: 403–413.Google Scholar
  78. Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M., and Springer, M. S. (1996). Interordinal mammalian relationships: Evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 6: 245–258.Google Scholar
  79. Laws, R. M. (1984). Hippopotamuses. In: The Encyclopedia of Mammals, D. Macdonald, ed., pp. 506–511, Facts on File, New York.Google Scholar
  80. Laws, R. M., and Clough, G. (1966). Observations on reproduction in the hippopotamus Hippopotamus amphibius Linn. Symp. Zool. Soc. Lond. 15: 117–140.Google Scholar
  81. Ledje, C., and Arnason, U. (1996). Phylogenetic analyses of complete cytochrome b genes of the order Carnivora with particular emphasis on the Caniformia. J. Mol. Evol. 42: 135–144.Google Scholar
  82. Lessa, E. P., and Cook, J. A. (1998). The molecular phylogenetics of tuco-tucos (genus Ctenomys, Rodentia: Octodontidae) suggests an early burst of speciation. Mol. Phylogenet. Evol. 9: 88–99.Google Scholar
  83. Luckett, W. P. (1994). Suprafamilial relationships within Marsupialia: Resolution and discordance from multidisciplinary data. J. Mammal. Evol. 2: 255–283.Google Scholar
  84. Luo, Z. (1998 in press). Homology and transformation of cetacean ectotympanic structures. In: The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, J. G. M. Thewissen, ed., Plenum Press, New York.Google Scholar
  85. Luo, Z., and Marsh, K. (1996). Petrosal (periotic) and inner ear of a Pliocene kogiine whale (Kogiinae, Odontoceti): Implications on relationships and hearing evolution of toothed whale. J. Vert. Paleontol. 16: 328–348.Google Scholar
  86. Ma, D.-P., Zharkikh, A., Graur, D., VandeBerg, J. L., and Li, W.-H. (1993). Structure and evolution of opossum, guinea pig, and porcupine cytochrome b genes. J. Mol. Evol. 36: 327–334.Google Scholar
  87. Matthee, C. A., and Robinson, T. J. (1997). Molecular phylogeny of the springhare, Pedetes capensis, based on mitochondrial DNA sequences. Mol. Biol. Evol. 14: 20–29.Google Scholar
  88. Matthew, W. D. (1909). The Carnivora and Insectivora of the Bridger Basin, Middle Eocene. Mem. Am. Mus. Nat. Hist. 9: 291–567.Google Scholar
  89. Matthew, W. D. (1937). Paleocene faunas of the San Juan Basin, New Mexico. Trans. Am. Phil. Soc. 30: 1–510.Google Scholar
  90. Matthew, W. D., and Granger, W. (1915). A revision of the Lower Eocene Wasatch and Wind River faunas. Bull. Am. Mus. Nat. Hist. 34: 1–103.Google Scholar
  91. McKean, C. F., Jump, E. B., and Weaver, M. E. (1971). The calcification pattern of deciduous teeth in miniature swine. Arch. Oral Biol. 16: 639–648.Google Scholar
  92. McKenna, M. C. (1987). Molecular and morphological analysis of high-level mammalian interrelationships. In: Molecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 55–93, Cambridge University Press, Cambridge.Google Scholar
  93. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  94. Messenger, S. L., and McGuire, J. A. (1998). Morphology, molecules, and the phylogenetics of cetaceans. Syst. Biol. 47: 90–124.Google Scholar
  95. Milinkovitch, M. C. (1995). Molecular phylogeny of cetaceans prompts revision of morphological transformations. Trends Ecol. Evol. 10: 328–334.Google Scholar
  96. Milinkovitch, M. C., and Thewissen, J. G. M. (1997). Even-toed fingerprints on whale ancestry. Nature 388: 622–624.Google Scholar
  97. Milinkovitch, M. C., Orti, G., and Meyer, A. (1993). Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature 361: 346–348.Google Scholar
  98. Milinkovitch, M. C., Meyer, A., and Powell, J. R. (1994). Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes. Mol. Biol. Evol. 11: 939–948.Google Scholar
  99. Milinkovitch, M. C., LeDuc, R. G., Adachi, J., Farnir, F., Georges, M., and Hasegawa, M. (1996). Effects of character weighting and species sampling on phylogeny reconstruction: A case study based on DNA sequence data in cetaceans. Genetics 144: 1817–1833.Google Scholar
  100. Miller, G. S. (1923). The telescoping of the cetacean skull. Smithson. Misc. Coll. 76: 1–71.Google Scholar
  101. Mindell, D. P., and Thacker, C. E. (1996). Rates of molecular evolution: Phylogenetic issues and applications. Annu. Rev. Ecol. Syst. 27: 279–303.Google Scholar
  102. Mishler, B. D. (1994). Cladistic analysis of molecular and morphological data. Am. J. Phys. Anthropol. 94: 143–156.Google Scholar
  103. Miyamoto, M. M., and Cracraft, J. (1991). Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics. In: Phylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds., pp. 3–17, Oxford University Press, New York.Google Scholar
  104. Montegelard, C., Catzeflis, F. M., and Douzery, E. (1997). Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14: 550–559.Google Scholar
  105. Naylor, G. J. P., and Brown, W. M. (1997). Structural biology and phylogenetic estimation. Nature 388: 527–528.Google Scholar
  106. Naylor, G. J. P., and Brown, W. M. (1998). Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst. Biol. 47: 61–76.Google Scholar
  107. Noro, M., Masuda, R., Dubrovo, I. A., Yoshida, M. C., and Kato, M. (1998). Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. J. Mol. Evol. 46: 314–326.Google Scholar
  108. Noubhani, A. (1988). Etude de la Variabilité de Numidotherium koholense Jaeger 1986 (Proboscidea). Unpublished Thesis, Université Pierre et Marie Curie (Paris VI), Paris.Google Scholar
  109. Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183: 1–112.Google Scholar
  110. Novacek, M. J. (1992a). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.Google Scholar
  111. Novacek, M. J. (1992b). Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Syst. Biol. 41: 58–73.Google Scholar
  112. Novacek, M. J. (1993). Reflections on higher mammalian phylogenetics. J. Mammal. Evol. 1: 3–30.Google Scholar
  113. Ohdachi, S., Masuda, R., Abe, H., Adachi, J., Dokuchaev, N. E., Haukisalmi, V., and Yoshida, M. C. (1997). Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences. Zool. Sci. 14: 527–532.Google Scholar
  114. Okada, N. (1991). SINEs. Curr. Opin. Genet. Dev. 1: 498–504.Google Scholar
  115. O'Leary, M. A. (1998). Phylogenetic and morphometric reassessment of the dental evidence for a mesonychian and cetacean clade. In: The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, J. G. M. Thewissen, ed., Plenum Press, New York (in press).Google Scholar
  116. O'Leary, M. A., and Rose, K. D. (1995). Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). J. Vert. Paleontol. 15: 401–430.Google Scholar
  117. Owen, R. (1848). Description of teeth and portions of jaws of two extinct anthracotheroid quadrupeds (Hyopotamus vectianus and Hyop. bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the N.W. coast of the Isle of Wight: With an attempt to develope Cuvier's idea of the classification of pachyderms by the number of their toes. Q. J. Geol. Sci. 4: 103–141.Google Scholar
  118. Ozawa, T., Hayashi, S., and Mikhelson, V. M. (1997). Phylogenetic position of mammoth and Stellar's sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. J. Mol. Evol. 44: 406–413.Google Scholar
  119. Patton, J. L., and da Silva, M. N. F. (1995). A review of the spiny mouse genus Scolomys (Rodentia: Muridae: Sigmodontinae) with the description of a new species from the western Amazon of Brazil. Proc. Biol. Soc. Wash. 108: 319–337.Google Scholar
  120. Patton, J. L., dos Reis, S. F., and da Silva, M. N. F. (1996). Relationships among didelphid marsupials based on sequence variation in the mitochondrial cytochrome b gene. J. Mammal. Evol. 3: 3–29.Google Scholar
  121. Pearson, H. S. (1923). Some skulls of Perchoerus (Thinohyus) from the White River and John Day Formations. Bull. Am. Mus. Nat. Hist. 48: 61–96.Google Scholar
  122. Pearson, H. S. (1927). On the skulls of Early Tertiary Suidae, together with an account of the otic region in some other primitive Artiodactyla. Phil. Trans. Roy. Soc. Lond. B 215: 389–460.Google Scholar
  123. Pickford, M. (1983). On the origins of Hippopotamidae together with descriptions of two new species, a new genus and a new subfamily from the Miocene of Kenya. Geobios 16: 193–217.Google Scholar
  124. Pickford, M. (1989). Update on hippo origins. C.R. Acad. Sci. Paris Ser. II 309: 163–168.Google Scholar
  125. Pickford, M. (1990). Découverte de Kenyapotamus en Tunisie. Ann. Paléontol. 76: 277–283.Google Scholar
  126. Prothero, D. R. (1993). Ungulate phylogeny: Molecular vs. morphological evidence. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 173–181. Springer-Verlag, New York.Google Scholar
  127. Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of the ungulates. In: The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 201–234, Clarendon Press, Oxford.Google Scholar
  128. Randi, E., Lucchini, V., and Hoong Diong, C. (1996). Evolutionary genetics of the Suiformes as reconstructed using mtDNA sequencing. J. Mammal. Evol. 3: 163–194.Google Scholar
  129. Randi, E., Mucci, N., Pierpaoli, M., and Douzery, E. (1998). New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene. Proc. Roy. Soc. Lond. B 265: 1–9.Google Scholar
  130. Roosevelt, T. (1910). African Game Trails, Charles Scribner's Sons, New York.Google Scholar
  131. Rose, K. D. (1985). Comparative osetology of North American dichobunid artiodactyls. J. Paleontol. 59: 1203–1226.Google Scholar
  132. Rose, K. D. (1990). Postcranial skeletal remains and adaptations in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. In: Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America, T. M. Bown and K. D. Rose, eds., pp. 107–133, Geological Society of America, Special Paper, Boulder, CO.Google Scholar
  133. Rose, K. D. (1996). On the origin of the order Artiodactyla. Proc. Natl. Acad. Sci. USA 93: 1705–1709.Google Scholar
  134. Ruedi, M., and Fumagalli, L. (1996). Genetic structure of gymnures (genus Hylomys; Erinaceidae) on continental islands of Southeast Asia: Historical effects of fragmentation. J. Zool. Syst. Evol. Res. 34: 153–162.Google Scholar
  135. Schaeffer, B. (1947). Notes on the origin and function of the artiodactyl tarsus. Am. Mus. Novit. 1356: 1–24.Google Scholar
  136. Schaeffer, B. (1948). The origin of a mammalian ordinal character. Evolution 2: 164–175.Google Scholar
  137. Schwartz, D. M. (1996). Snatching scientific secrets from the hippo's gaping jaws. Smithsonian 26: 90–101.Google Scholar
  138. Scott, W. B. (1940). The mammalian fauna of the White River Oligocene. Part IV. Artiodactyla. Trans. Am. Phil. Soc. 28: 363–746.Google Scholar
  139. Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., and Okada, N. (1997). Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388: 666–670.Google Scholar
  140. Shoshani, J., Groves, C. P., Simons, E. L., and Gunnell, G. F. (1996). Primate phylogeny: Morphological vs molecular results. Mol. Phylogenet. Evol. 5: 102–154.Google Scholar
  141. Simons, E. L. (1991). Early Tertiary elephant-shrews from Egypt and the origin of the Macroscelidea. Proc. Natl. Acad. Sci. USA 88: 9734–9737.Google Scholar
  142. Simpson, C. D. (1984). Artiodactyls. In: Orders and Families of Recent Mammals of the World, S. Anderson and J. K. Jones, eds., pp. 563–587, John Wiley & Sons, New York.Google Scholar
  143. Simpson, G. G. (1961). Principles of Animal Taxonomy, Columbia University Press, New York.Google Scholar
  144. Smith, A. B. (1994). Rooting molecular trees: Problems and strategies. Biol. J. Linn. Soc. 51: 279–292.Google Scholar
  145. Smith, M. F. (1998). Phylogenetic relationships and geographic structure in pocket gophers in the genus Thomomys. Mol. Phylogenet. Evol. 9: 1–14.Google Scholar
  146. Smith, M. F., and Patton, J. L. (1993). The diversification of South American murid rodents: Evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol. J. Linn. Soc. 50: 149–177.Google Scholar
  147. Smith, M. R., Shivji, M. S., Waddell, V. G., and Stanhope, M. J. (1996). Phylogenetic evidence from the IRBP gene for the paraphyly of toothed whales, with mixed support for Cetacea as a suborder of Artiodactyla. Mol. Biol. Evol. 13: 918–922.Google Scholar
  148. Stanley, H. F., Kadwell, M., and Wheeler, J. C. (1994). Molecular evolution of the family Camelidae: A mitochondrial DNA study. Proc. R. Soc. Lond. B 256: 1–6.Google Scholar
  149. Stehlin, H. G. (1899). Ueber die Geschichte des Suiden-Gebisses. Abh. Schweiz. Paläont. Ges. 26: 1–336.Google Scholar
  150. Stehlin, H. G. (1910). Die Säugetiere des schweizerischen Eocaens. Sechster Teil. Abh. Schweiz. Paläont. Ges. 36: 839–1164.Google Scholar
  151. Sudre, J. (1978). Les Artiodactyles de l'Eocène moyen et supérieur d'Europe occidentale; systématique et évolution. Mém. Trav. EPHE Inst. Montpellier 7: 1–229.Google Scholar
  152. Sudre, J., and Erfurt, J. (1996). Les Artiodactyles du gisement Yprésien terminal de Prémontré (Aisne, France). Palaeovertebrata 25: 391–414.Google Scholar
  153. Sudre, J., Russell, D. E., Louis, P., and Savage, D. E. (1983). Les Artiodactyles de L'Éocene inférieur d'Europe, Première partié. Bull. Mus. Nat. Hist. Nat. Paris 5: 281–333.Google Scholar
  154. Sullivan, J., and Swofford, D. L. (1997). Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. J. Mammal. Evol. 4: 77–86.Google Scholar
  155. Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. (1996). Phylogenetic inference. In: Molecular Systematics, 2nd ed., D. M. Hillis, C. Moritz, and B. K. Mable, eds., pp. 407–510, Sinauer Associates, Sunderland, MA.Google Scholar
  156. Taberlet, P., Fumagalli, L., and J. Hausser. (1994). Chromosomal versus mitochondrial DNA evolution: Tracking the evolutionary history of the southwestern European populations of the Sorex araneus group (Mammalia, Insectivora). Evolution 48: 623–636.Google Scholar
  157. Talbot, S. L., and Shields, G. F. (1996). A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. Mol. Phylogenet. Evol. 5: 567–575.Google Scholar
  158. Tanaka, K., Solis, C. D., Masangkay, J. S., Maeda, K., Kawamoto, Y., and Namikawa, T. (1996). Phylogenetic relationship among all living species of the genus Bubalus based on DNA sequences of the cytochrome b gene. Biochem. Genet. 34: 443–452.Google Scholar
  159. Thewissen, J. G. M. (1994). Phylogenetic aspects of cetacean origins: A morphological perspective. J. Mammal. Evol. 2: 157–184.Google Scholar
  160. Thewissen, J. G. M., and Hussain, S. T. (1990). Postcranial osteology of the most primitive artiodactyl Diacodexis pakistanensis (Dichobunidae). Anat. Histol. Embryol. 19: 37–48.Google Scholar
  161. Thewissen, J. G. M., and Hussain, S. T. (1998). Systematic review of the Pakicetidae, early and middle Eocene Cetacea (Mammalia) from Pakistan and India. In: Dawn of the Age of Mammals in Asia, K. C. Beard and M. R. Dawson, eds., pp. 220–238, Bull. Carnegie Mus. Nat. Hist. No. 34, Pittsburgh, PA.Google Scholar
  162. Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. (1996). Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 28: 1–86.Google Scholar
  163. Thomas, W. K., and Martin, S. L. (1993). A recent origin of marmots. Mol. Phylogenet. Evol. 2: 330–336.Google Scholar
  164. Tobien, H. (1985). Zur Osteologie von Masillabune (Mammalia, Artiodactyla, Haplobunodontidae) aus dem Mitteleozän der Fossilfundstätte Messel bei Darmstadt (S-Hessen, Bundesrepublik Deutschland). Geol. Jb. Hessen 113: 5–58.Google Scholar
  165. Viret, J. (1961). Artiodactyla. In: Traité de Paléontologie, Vol. VI, J. Piveteau, ed., pp. 887–1084, Masson et Cie, Paris.Google Scholar
  166. Wägele, J. W. (1995). On the information content of characters in comparative morphology and molecular systematics. J. Zool. Syst. Evol. Res. 33: 42–47.Google Scholar
  167. Weaver, M. E., Jump, E. B., and McKean, C. F. (1966). The eruption pattern of deciduous teeth in miniature swine. Anat. Rec. 154: 81–86.Google Scholar
  168. Webb, S. D., and Taylor, B. E. (1980). The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx. Bull. Am. Mus. Nat. Hist. 167: 121–157.Google Scholar
  169. Weber, M. (1904). Die Säugetiere, Gustav Fischer, Jena.Google Scholar
  170. Weber, M. (1928). Die Säugetiere, Zweite Auflage, Gustav Fischer, Jena.Google Scholar
  171. West, R. M. (1971). Deciduous dentition of the Early Tertiary Phenacodontidae (Condylarthra, Mammalia). Am. Mus. Novitates 2461: 1–37.Google Scholar
  172. Wilson, D. E., and Reeder, D. M. (1993). Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd ed., Smithsonian Institution Press, Washington, DC.Google Scholar
  173. Xia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A. M., Zhang, L., Yu, L., and Deisenhofer, J. (1997). Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277: 60–66.Google Scholar
  174. Xu, X., and Arnason, U. (1996). A complete sequence of the mitochondrial genome of the Western lowland gorilla. Mol. Biol. Evol. 13: 691–698.Google Scholar
  175. Xu, X., and Arnason, U. (1997). The complete mitochondrial DNA sequence of the white rhinoceros, Ceratotherium simum, and comparison with the mtDNA sequence of the Indian rhinoceros, Rhinoceros unicornis. Mol. Phylogenet. Evol. 7: 189–194.Google Scholar
  176. Xu, X., Janke, A., and Arnason, U. (1996). The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla, and Artiodactyla (+Cetacea). Mol. Biol. Evol. 13: 1167–1173.Google Scholar
  177. Yoder, A. D., Cartmill, M., Ruvolo, M., Smith, K., and Vilgalys, R. (1996). Ancient single origin for Malagasy primates. Proc. Natl. Acad. Sci. USA 93: 5122–5126.Google Scholar
  178. Zittel, K. A. von (1925). Text-Book of Palaeontology, Vol. III. Mammalia, Macmillan, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • W. Patrick Luckett
  • Nancy Hong

There are no affiliations available

Personalised recommendations