Antonie van Leeuwenhoek

, Volume 81, Issue 1–4, pp 397–407 | Cite as

Quorum-sensing in Rhizobium

Article

Abstract

Quorum-sensing signals are found in many species of legume-nodulating rhizobia. In a well-characterized strain of R. leguminosarum biovar viciae, a variety of autoinducers are synthesised, and all have been identified as N-acyl-homoserine lactones. One of these N-acyl-homoserine lactones, is N-(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone, previously known as small bacteriocin, which inhibits the growth of several R. leguminosarum strains. The cinRI locus is responsible for the production of small bacteriocin. CinR induces cinI in response to the AHL made by CinI, thus forming a positive autoregulatory induction loop. A complex cascade of quorum-sensing loops was characterized, in which the cinIR locus appears to be the master control for three other AHL-dependent quorum-sensing control systems. These systems include the raiI/raiR, traI/triR and rhiI/rhiR. Other rhizobial strains appear to share some of these quorum sensing loci, but not all loci are found in all strains. Small bacteriocin along with the other N-acyl-homoserine lactones produced by these three AHL-based control systems regulate (i) growth inhibition of sensitive strains, (ii) transfer of the symbiotic plasmid pRL1JI, and (iii) expression of the rhizosphere-expressed (rhi) genes that influence nodulation. Some of the genes regulated by these systems have been identified. While the functions of some, such as the trb operon regulated by triR are clear, several of the regulated genes have no homologues of known function. It is anticipated that several other genes regulated by these systems have yet to be identified. Therefore, despite the regulation of one of the most complex quorum-sensing cascade being understood, several of the functions regulated by the quorum-sensing genes remain to be elucidated.

autoinducer bacteriocin legumes N-acyl-homoserine-lactone nodulation quorum-sensing Rhizobium symbiosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S & Givskov M(2001) gfp-based N-acylhomoserine-lactone sensor systems for detection of bacterial communication. Appl. Environ. Microbiol. 67: 575–585.PubMedCrossRefGoogle Scholar
  2. Bassler BL, Wright M, Showalter RE & Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9: 773–786.PubMedGoogle Scholar
  3. Bassler BL, Wright M & Silverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13: 273–286.PubMedGoogle Scholar
  4. Beck von Bodman S, Hayman GT & Farrand SK (1992) Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc. Natl. Acad. Sci. USA 89: 643–647.PubMedCrossRefGoogle Scholar
  5. Brewin NJ, Beringer JE, Buchanan-Wollaston AV, Johnston AWB & Hirsch PR (1980) Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum. J. Gen. Microbiol. 116: 261–270.Google Scholar
  6. Callahan SM & Dunlap PV (2000) LuxR-and acyl-homoserinelactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J. Bacteriol. 182: 2811–2822.PubMedCrossRefGoogle Scholar
  7. Cha C, Gao P, Chen Y-C, Shaw PD & Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by Gramnegative plant-associated bacteria. Mol. Plant-Microbe Interact. 11: 1119–1129.PubMedGoogle Scholar
  8. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL & Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545–549.PubMedCrossRefGoogle Scholar
  9. Cubo MT, Economou A, Murphy G, Johnston AWB & Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J. Bacteriol. 174: 4026–4035.PubMedGoogle Scholar
  10. Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J & Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J. Biol. Chem. 277: 462–468.PubMedCrossRefGoogle Scholar
  11. Dibb NJ, Downie JA & Brewin NJ (1984) Identification of a rhizosphere protein encoded by the symbiotic plasmid of Rhizobium leguminosarum. J. Bacteriol. 158: 621–627.PubMedGoogle Scholar
  12. Dong YH, Xu JL, Li XZ & Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserinelactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526–3531.PubMedCrossRefGoogle Scholar
  13. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF & Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813–817.PubMedCrossRefGoogle Scholar
  14. Dong YH, Gusti AR, Zhang Q, Xu JL & Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68: 1754–1759.PubMedCrossRefGoogle Scholar
  15. Eberhard A, Burlingame AL, Eberhard C, Keenyon GL, Nealson KH & Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20: 2444–2449.PubMedCrossRefGoogle Scholar
  16. Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S & Givskov M (1996) Involvement of N-acyl-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol. Microbiol. 20: 127–136.PubMedGoogle Scholar
  17. Eberl L (1999) N-acyl homoserine lactone-mediated gene regulation in gram-negative bacteria. Syst. Appl. Microbiol. 22: 493–506.PubMedGoogle Scholar
  18. Economou A, Hawkins FKL, Downie JA & Johnston AWB (1989) Transcription of rhiA, a gene on a Rhizobium leguminosarum bv. viciae Sym plasmid, requires rhiR and is repressed by flavonoids that induce nod genes. Mol. Microbiol. 3: 87–93.PubMedGoogle Scholar
  19. Engebrecht J, Nealson K & Silverman M (1983) Bacterial luminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32: 773–781.PubMedCrossRefGoogle Scholar
  20. Engebrecht J & Silverman M (1984) Identification of genes and gene products necessary for bacterial luminescence. Proc. Natl. Acad. Sci. USA 81: 4154–4158.PubMedCrossRefGoogle Scholar
  21. Flavier AB, Ganova-Raeva LM, Schell MA & Denny TP (1997) Hierarchical atoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J. Bacteriol. 179: 7089–7097.PubMedGoogle Scholar
  22. Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GSAB & Grieson D (1999) Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nature Biotech. 17: 1017–1020.CrossRefGoogle Scholar
  23. Freiberg C, Fellay R, Bairoch A, BroughtonWJ, Rosenthal A & Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394–401.PubMedCrossRefGoogle Scholar
  24. Fuqua WC, Winans SC & Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269–275.PubMedGoogle Scholar
  25. Fuqua C & Greenberg EP (1998) Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 1: 183–189.PubMedCrossRefGoogle Scholar
  26. Gill RE & Cull MG (1986) Control of developmental gene expression by cell-to-cell interactions in Myxococcus xanthus. J Bacteriol. 168: 341–347.PubMedGoogle Scholar
  27. Gilson L, Kuo A & Dunlap PV (1995) AinS and a new family of autoinducer synthesis proteins. J. Bacteriol. 177: 6946–6951.PubMedGoogle Scholar
  28. Goel AK, Sindhu SS & Dadarwal KR (1999) Bacteriocin-producing native rhizobia of green gram (Vigna radiata) having competitive advantage in nodule occupancy. Microbiol. Res. 154: 43–48.Google Scholar
  29. Gray KM, Pearson JP, Downie JA, Boboye BEA & Greenberg EP (1996) Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J. Bacteriol. 178: 372–376.PubMedGoogle Scholar
  30. Hirsch PR (1979) Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J. Gen. Microbiol. 113: 219–228.Google Scholar
  31. Hirsch PR, van Montagu M, Johnston AWB, Brewin NJ & Schell J (1980) Physical identification of bacteriocinogenic, nodulation plasmids in strains of Rhizobium leguminosarum. J. Gen. Microbiol. 120: 403–412.Google Scholar
  32. Holden MTG, Chhabra SR, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GPC, Stewart GSAB, Bycroft BW, Kjelleberg S & Williams P (1999) Quorum-sensing cross-talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol. Microbiol. 33: 1254–1266.PubMedCrossRefGoogle Scholar
  33. Horinouchi S & Beppu T (1990) Autoregulatory factors of secondary metabolism and morphogenesis in actinomycetes. Crit. Rev. Biotechnol. 10: 191–204.PubMedGoogle Scholar
  34. Johnston AWB, Beynon JL, Buchanan-Wollaston AV, Stetchell SM, Hirsch P & Beringer JE (1978) High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature 276: 634–636.CrossRefGoogle Scholar
  35. Hwang I, Li P-L, Zhang L, Piper KR, Cook DM, Tate ME & Farrand SK (1994) TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc. Natl. Acad. Sci. USA 91: 4639–4643.PubMedCrossRefGoogle Scholar
  36. Laue RE, Jiang Y, Chhabra SR, Jacob S, Stewart GSAB, Hardman A, Downie JA, O'Gara F & Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146: 2469–2480.PubMedGoogle Scholar
  37. Leadbetter JR & Greenberg EP (2000) Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921–6926.PubMedCrossRefGoogle Scholar
  38. Lilley BN & Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma-54. Mol. Microbiol. 36: 940–954.PubMedCrossRefGoogle Scholar
  39. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dyé F, Williams P & Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol. 37: 81–97.PubMedCrossRefGoogle Scholar
  40. Lithgow JK, Danino VE, Jones J & Downie JA (2001) Analysis of N-acyl homoserine-lactone quorum-sensing molecules made by different strains and biovars of Rhizobium leguminosarum containing different symbiotic plasmids. Plant and Soil 232: 3–12.CrossRefGoogle Scholar
  41. Loh JT, Yuen-Tsai JPY, Stacey MG, Lohar D, Welborn A & Stacey G (2001) Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol. Microbiol. 42: 37–46.PubMedCrossRefGoogle Scholar
  42. Lotz W & Mayer F (1982) Isolation and characterization of a bacteriophage tail-like bacteriocin from a strain of Rhizobium. J. Virol. 9: 160–173.Google Scholar
  43. Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P & Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145: 283–291.PubMedCrossRefGoogle Scholar
  44. Manefield M, Welch M, Givskov M, Salmond GPC & Kjelleberg S (2001) Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett. 205: 131–138.PubMedCrossRefGoogle Scholar
  45. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Swift S, Bycroft BW, Stewart GSAB & Williams P (1997) Quorum-sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 3703–3711.PubMedGoogle Scholar
  46. McKenney D, Brown KE & Allison DG (1995) Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication. J. Bacteriol. 177: 6989–6992.PubMedGoogle Scholar
  47. Nealson KH, Platt T & Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104: 313–322.PubMedGoogle Scholar
  48. Oresnik IJ, Twelker S & Hynes MF (1999) Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl. Environ. Microbiol. 65: 2833–2840.PubMedGoogle Scholar
  49. Passador L, Cook JM, Gambello MJ, Rust L & Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260: 1127–1130.PubMedGoogle Scholar
  50. Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP & Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96: 11229–11234.PubMedCrossRefGoogle Scholar
  51. Pirhonen M, Flego D, Heikinheimo R & Palva ET (1993) A small diffusible molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12: 2467–2476.PubMedGoogle Scholar
  52. Priem WJE & Wijffelman CA (1984) Selection of strains cured of the Rhizobium leguminosarum Sym-plasmid pRL1JI by using small bacteriocin. FEMS Microbiol. Lett. 25: 247–251.CrossRefGoogle Scholar
  53. Puskas A, Greenberg EP, Kaplan S & Schaefer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179: 7530–7537.PubMedGoogle Scholar
  54. Reverchon S, Bouillant ML, Salmond G & Nasser W (1998) Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi. Mol Microbiol. 29: 1407–1418.PubMedCrossRefGoogle Scholar
  55. Rodelas B, Gonzalez-Lopez J, Salmeron V, Martinez-Toledo MV & Pozo C (1998) Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv viceae isolated from agricultural soils in Spain. Appl. Soil Ecol. 8: 51–60.CrossRefGoogle Scholar
  56. Rodelas B, Lithgow JK, Wisniewski-Dyé F, Hardman A, Wilkinson A, Economou A, Williams P & Downie JA (1999) Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J. Bacteriol. 181: 3816–3823.PubMedGoogle Scholar
  57. Rosemeyer V, Michiels J, Verreth C & Vanderleyden J (1998) luxIand luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol. 180: 815–821.PubMedGoogle Scholar
  58. Schripsema J, deRudder KEE, vanVliet TB, Lankhorst PP, deVroom E, Kijne JW & vanBrussel AAN (1996) Bacteriocin small of Rhizobium leguminosarium belongs to the class of N-acyl-1-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol. 178: 366–371.PubMedGoogle Scholar
  59. Schwinghamer EA & Brockwell J (1978) Competitive advantage of bacteriocin and phage-producing strains of Rhizobium trifolii in mixed culture. Soil Biol. Biochem. 10: 383–387.CrossRefGoogle Scholar
  60. Shadel GS & Baldwin TO (1991) The Vibrio fischeri LuxR protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene. J. Bacteriol. 173: 568–574.PubMedGoogle Scholar
  61. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL & Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin layer chromatography. Proc. Natl. Acad. Sci. USA 94: 6036–6041.PubMedCrossRefGoogle Scholar
  62. Sourjik V, Muschler P, Scharf B & Schmitt R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J Bacteriol. 182: 782–788.PubMedCrossRefGoogle Scholar
  63. Teplitski M, Robinson JB & Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact. 13: 637–648.PubMedGoogle Scholar
  64. Thorne SH & Williams HD (1997) Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J. Bacteriol. 179: 6894–6901.PubMedGoogle Scholar
  65. Thorne SH & Williams HD (1999) Cell density-dependent starvation survival of Rhizobium leguminosarum bv. phaseoli: identification of the role of an N-acyl homoserine lactone in adaptation to stationary-phase survival. J. Bacteriol. 181: 981–990.PubMedGoogle Scholar
  66. van Brussel AA, Zaat SA, Wijffelman CA, Pees E & Lugtenberg BJ (1985) Bacteriocin small of fast-growing rhizobia is chloroform soluble and is not required for effective nodulation. J. Bacteriol. 162: 1079–1082.PubMedGoogle Scholar
  67. Whiteley M, Lee KM & Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96: 13904–13909.PubMedCrossRefGoogle Scholar
  68. Whiteley M, Parsek MR & Greenberg (2000) Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J. Bacteriol. 182: 4356–4360.PubMedCrossRefGoogle Scholar
  69. Wijffelman CA, Pees E, van Brussel AAN & Hooykaas PJJ (1983) Repression of small bacteriocin excretion in Rhizobium leguminosarum and Rhizobium trifolii by transmissible plasmids. Mol. Gen. Genet. 192: 171–176.CrossRefGoogle Scholar
  70. Wilkinson A, Danino V, Wisniewski-Dyé F, Lithgow JK & Downie JA (2002) N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J. Bacteriol. in press.Google Scholar
  71. Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GPC, Bycroft BW, Lazdunski A, Stewart GSAB & Williams P (1995) Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 9427–9431.PubMedCrossRefGoogle Scholar
  72. Winson MK, Swift S, Fish L, Throup JP, Jφrgensen F, Chhabra SR, Bycroft B, Williams P & Stewart GSAB (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum-sensing. FEMS Microbiol. Lett. 163: 185–192.PubMedCrossRefGoogle Scholar
  73. Winzer K, Hardie KR & Williams P (2002a) Bacterial cell-to-cell communication: sorry, can't talk now - gone to lunch ! Curr. Opin. Microbiol. 5: 216–222.PubMedCrossRefGoogle Scholar
  74. Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MTG, Linforth R, Cornell KA, Taylor AJ, Hill PJ & Williams P (2002b) LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148: 909–922.PubMedGoogle Scholar
  75. Wisniewski-Dyé F, Jones J, Chhabra SR & Downie JA (2002) raiIR genes are part of a quorum-sensing network controlled by CinI and CinR in Rhizobium leguminosarum J. Bacteriol. 184: 1597–1606.PubMedCrossRefGoogle Scholar
  76. Young JPW & Wexler M (1988) Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J. Gen. Microbiol. 134: 2371–2391.Google Scholar
  77. Zhang L, Murphy PJ, Kerr A & Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362: 446–448.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Laboratoire d'Écologie MicrobienneUMR-CNRS 5557, UniversitéVilleurbanne cedexFrance
  2. 2.John Innes CentreNorwichUK

Personalised recommendations