Photosynthesis Research

, Volume 73, Issue 1–3, pp 109–114

On the natural selection and evolution of the aerobic phototrophic bacteria

  • J. Thomas Beatty
Article

Abstract

This contribution gives a brief survey of the short history since the discovery of the aerobic phototrophic bacteria to focus on a general evolutionary scenario. Most of the citations are of reviews that have covered the earlier literature and to which the reader is directed at appropriate places in the following text. The data summarized in these reviews are supplemented with information from recent or otherwise key primary publications in order to support a synthesis that addresses vexing questions about bacteria containing photosynthetic pigment-protein complexes, but which are incapable of growth with light as the sole, or even the major source of energy.

aerobic phototrophic bacteria ecology evolution Z. Kolber photosynthesis purple photosynthetic bacteria T. Shiba K. Shimada T. Suyama A. Verméglio V. Yurkov D. Zannoni 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer CE and Bird TH (1996) Regulatory circuits controlling photosynthesis gene expression. Cell 85: 5–8PubMedCrossRefGoogle Scholar
  2. Candela M, Zaccherini E and Zannoni D (2001) Respiratory electron transport and light-induced energy transduction in membranes from the aerobic photosynthetic bacterium Roseobacter denitrificans. Arch Microbiol 175: 169–177CrossRefGoogle Scholar
  3. Cogdell RJ and Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79PubMedGoogle Scholar
  4. Cohen-Bazire G, Sistrom S and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulphur purple bacteria. J Cell Comp Physiol 49: 25–68CrossRefGoogle Scholar
  5. Daldal F, Mandaci S, Winterstein C, Myllykallio H, Duyck K and Zannoni D (2001) Mobile cytochrome c2 and membraneanchored cytochrome cy are both efficient electron donors to the cbb3-and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides. J Bacteriol 183: 2013–2024PubMedCrossRefGoogle Scholar
  6. Des Marais DJ (2000) Evolution: when did photosynthesis emerge on Earth? Science 289: 1703–1705Google Scholar
  7. Fleischman D and Kramer D (1998) Photosynthetic rhizobia. Biochim Biophys Acta 1364: 17–36PubMedCrossRefGoogle Scholar
  8. Furnas MJ (1990) In situ growth rates of phytoplankton: approaches to measurement, community and species growth rates. J Plankton Res 12: 1117–1151Google Scholar
  9. Gest H (1993) Photosynthetic and quasi-photosynthetic bacteria. FEMS Microbiol Lett 112: 1–6CrossRefGoogle Scholar
  10. Giraud E, Fardoux J, Fourrier N, Hannibal L, Genty B, Bouyer P, Dreyfus B and Verméglio A (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature (London) 417: 202–205CrossRefGoogle Scholar
  11. Hochkoeppler A, Jenney FE, Lang SE, Zannoni D and Daldal F (1995) Membrane-associated cytochrome c y of Rhodobacter capsulatus is an electron carrier from the cytochrome bc1 complex to the cytochrome c oxidase during respiration. J Bacteriol 177: 608–613PubMedGoogle Scholar
  12. Kolber ZS, Prasil O and Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367: 88–106PubMedCrossRefGoogle Scholar
  13. Kolber ZS, Vandover CL, Niederman RA and Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature (London) 407: 177–179CrossRefGoogle Scholar
  14. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, Vandover CL, Vetriani C, Koblizek M, Rathgeber C and Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495PubMedCrossRefGoogle Scholar
  15. Lancaster CRD, Ermler U and Michel H (1995) The structures of photosynthetic reaction centers from purple bacteria as revealed by X-ray crystallography. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  16. Madigan MT, Martinko JM and Parker J (2000) Brock Biology of Microorganisms. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  17. Nishimura K, Shimada H, Ohta H, Masuda T, Shioi Y and Takamiya K-I (1996) Expression of the puf operon in an aerobic photosynthetic bacterium, Roseobacter denitrificans. Plant Cell Physiol 37: 153–159PubMedGoogle Scholar
  18. Oh J-I and Kaplan S (2001) Generalized approach to the regulation and integration of gene expression. Mol Microbiol 39: 1116–1123PubMedCrossRefGoogle Scholar
  19. Okamura MY, Paddock ML, Graige MS and Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta 1458: 148–163PubMedCrossRefGoogle Scholar
  20. Overmann J, Beatty JT, Hall KJ and Pfennig N (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36: 846–859CrossRefGoogle Scholar
  21. Overmann J, Hall KJ, Northcote TG and Beatty JT (1999) Grazing of the copepod Diaptomous connexus on purple sulphur bacteria in a meromictic salt lake. Environ Microbiol 1: 213–221PubMedCrossRefGoogle Scholar
  22. Papiz MZ, Prince SM, Hawthornthwaite-Lawless AM, McDermott G, Freer AA, Isaacs NW and Cogdell RJ (1996) A model for the photosynthetic apparatus of purple bacteria. Trends Plant Sci 1: 198–206CrossRefGoogle Scholar
  23. Pfennig N (1967) Photosynthetic bacteria. Annu Rev Microbiol 21: 285–384PubMedCrossRefGoogle Scholar
  24. Presti D and Delbrück M (1978) Photoreceptors for biosynthesis, energy storage and vision. Plant Cell Environ 1: 81–100CrossRefGoogle Scholar
  25. Prince RC (1990) Bacterial photosynthesis: from photons to ?p. Bacteria 12: 111–149Google Scholar
  26. Schwarze C, Carluccio AV, Venturoli G and Labahn A (2000) Photo-induced cyclic electron transfer involving cytochrome bc1 complex and reaction center in the obligate aerobic phototroph Roseobacter denitrificans. Eur J Biochem 267: 422–433PubMedCrossRefGoogle Scholar
  27. Shiba T, Simidu U and Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45PubMedGoogle Scholar
  28. Shimada K (1995) Aerobic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 105–122. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  29. Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KVP and Hanada S (2002) Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. Appl Environ Microbiol 68: 1665–1673PubMedCrossRefGoogle Scholar
  30. Van Gemerden H and Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 105–122. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  31. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar
  32. Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730PubMedCrossRefGoogle Scholar
  33. Yurkov V and Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 695–724.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Thomas Beatty
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of British Columbia, 300-6174VancouverCanada

Personalised recommendations