Pharmaceutical Research

, Volume 19, Issue 10, pp 1400–1416 | Cite as

Comparison of Human Duodenum and Caco-2 Gene Expression Profiles for 12,000 Gene Sequences Tags and Correlation with Permeability of 26 Drugs

  • Duxin Sun
  • Hans Lennernas
  • Lynda S. Welage
  • Jeffery L. Barnett
  • Christopher P. Landowski
  • David Foster
  • David Fleisher
  • Kyung-Dall Lee
  • Gordon L. AmidonEmail author


Purpose. To compare gene expression profiles and drug permeability differences in Caco-2 cell culture and human duodenum.

Methods. Gene expression profiles in Caco-2 cells and human duodenum were determined by GeneChip® analysis. In vivo drug permeability measurements were obtained through single-pass intestinal perfusion in human subjects, and correlated with in vitro Caco-2 transport permeability.

Results. GeneChip® analysis determined that 37, 47, and 44 percent of the 12,559 gene sequences were expressed in 4-day and16-day Caco-2 cells and human duodenum, respectively. Comparing human duodenum with Caco-2 cells, more than 1000 sequences were determined to have at least a 5-fold difference in expression. There were 26, 38, and 44 percent of the 443 transporters, channels, and metabolizing enzymes detected in 4-day, 16-day Caco-2 cells, and human duodenum, respectively. More than 70 transporters and metabolizing enzymes exhibited at least a 3-fold difference. The overall coefficient of variability of the 10 human duodenal samples for all expressed sequences was 31% (range 3% to 294%) while that of the expressed transporters and metabolizing enzymes was 33% (range 3% to 87%). The in vivo / in vitro drug permeability measurements correlated well for passively absorbed drugs (R2 = 85%). The permeability correlation for carrier-mediated drugs showed 3- 35-fold higher in human above the correlation of passively absorbed drugs. The 2- 595-fold differences in gene expression levels between the Caco-2 cells and human duodenum correlated with the observed 3- 35-fold difference in permeability correlation between carrier-mediated drugs and passively absorbed drugs.

Conclusions. Significant differences in gene expression levels in Caco-2 cells and human duodenum were observed. The observed differences of gene expression levels were consistent with observed differences in carrier mediated drug permeabilities. Gene expression profiling is a valuable new tool for investigating in vitro and in vivo permeability correlation.

gene expression transporter GeneChip® permeability in vivo/in vitro correlation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Pade and S. Stavchansky. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J.Pharm.Sci. 87:1604-1607 (1998).Google Scholar
  2. 2.
    J. Taipalensuu, H. Tornblom, G. Lindberg, C. Einarsson, F. Sjoqvist, H. Melhus, P. Garberg, B. Sjostrom, B. Lundgren, and P. Artursson. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J.Pharmacol.Exp.Ther. 299:164-170 (2001).Google Scholar
  3. 3.
    S. Chong, S. A. Dando, K. M. Soucek, and R. A. Morrison. In vitro permeability through caco-2 cells is not quantitatively predictive of in vivo absorption for peptide-like drugs absorbed via the dipeptide transporter system. Pharm.Res. 13:120-123 (1996).Google Scholar
  4. 4.
    S. Yee. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm.Res. 14:763-766 (1997).Google Scholar
  5. 5.
    S. Yamashita, Y. Tanaka, Y. Endoh, Y. Taki, T. Sakane, T. Nadai, and H. Sezaki. Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm.Res. 14:486-491 (1997).Google Scholar
  6. 6.
    C. P. Hsu, J. M. Hilfinger, E. Walter, H. P. Merkle, B. J. Roessler, and G. L. Amidon. Overexpression of human intestinal oligopeptide transporter in mammalian cells via adenoviral transduction. Pharm.Res. 15:1376-1381 (1998).Google Scholar
  7. 7.
    H. K. Han, J. K. Rhie, D. M. Oh, G. Saito, C. P. Hsu, B. H. Stewart, and G. L. Amidon. CHO/hPEPT1 cells overexpressing the human peptide transporter (hPEPT1) as an alternative in vitro model for peptidomimetic drugs. J.Pharm.Sci. 88:347-350 (1999).Google Scholar
  8. 8.
    C. J. Lin, W. Akarawut, and D. E. Smith. Competitive inhibition of glycylsarcosine transport by enalapril in rabbit renal brush border membrane vesicles: interaction of ACE inhibitors with high-affinity H+/peptide symporter. Pharm.Res. 16:609-615 (1999).Google Scholar
  9. 9.
    X. Wu, R. L. George, W. Huang, H. Wang, S. J. Conway, F. H. Leibach, and V. Ganapathy. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim.Biophys.Acta 1466:315-327 (2000).Google Scholar
  10. 10.
    T. Kageyama, M. Nakamura, A. Matsuo, Y. Yamasaki, Y. Takakura, M. Hashida, Y. Kanai, M. Naito, T. Tsuruo, N. Minato, and S. Shimohama. The 4F2hc/LAT1 complex transports LDOPA across the blood-brain barrier. Brain Res. 879:115-121 (2000).Google Scholar
  11. 11.
    S. Yamashita, T. Furubayashi, M. Kataoka, T. Sakane, H. Sezaki, and H. Tokuda. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur.J.Pharm.Sci. 10:195-204 (2000).Google Scholar
  12. 12.
    S. D. Raeissi, J. Li, and I. J. Hidalgo. The role of an alpha-amino group on H+-dependent transepithelial transport of cephalosporins in Caco-2 cells. J.Pharm.Pharmacol. 51:35-40 (1999).Google Scholar
  13. 13.
    E. Walter, S. Janich, B. J. Roessler, J. M. Hilfinger, and G. L. Amidon. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. J.Pharm.Sci. 85:1070-1076 (1996).Google Scholar
  14. 14.
    H. Lennernas. Human intestinal permeability. J.Pharm.Sci. 87: 403-410 (1998).Google Scholar
  15. 15.
    J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, and J. R. Grove. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J.Pharm.Sci. 88:28-33 (1999).Google Scholar
  16. 16.
    R. A. Morrison, S. Chong, A. M. Marino, M. A. Wasserman, P. Timmins, V. A. Moore, and W. J. Irwin. Suitability of enalapril as a probe of the dipeptide transporter system: in vitro and in vivo studies. Pharm.Res. 13:1078-1082 (1996).Google Scholar
  17. 17.
    W. Kamm, P. Raddatz, J. Gante, and T. Kissel. Prodrug approach for alphaIIbbeta3-peptidomimetic antagonists to enhance their transport in monolayers of a human intestinal cell line (Caco-2): comparison of in vitro and in vivo data. Pharm.Res. 16:1527-1533 (1999).Google Scholar
  18. 18.
    C. Hilgendorf, H. Spahn-Langguth, C. G. Regardh, E. Lipka, G. L. Amidon, and P. Langguth. Caco-2 vs. Caco-2/HT29-MTX cocultured cell lines: permeabilities via diffusion, inside-and outside-directed carrier-mediated transport. J.Pharm.Sci. 89:63-75 (2000).Google Scholar
  19. 19.
    M. Yazdanian, S. L. Glynn, J. L. Wright, and A. Hawi. Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm.Res. 15:1490-1494 (1998).Google Scholar
  20. 20.
    P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem.Biophys.Res.Commun. 175:880-885 (1991).Google Scholar
  21. 21.
    K. Palm, K. Luthman, A. L. Ungell, G. Strandlund, and P. Artursson. Correlation of drug absorption with molecular surface properties. J.Pharm.Sci. 85:32-39 (1996).Google Scholar
  22. 22.
    M. D. Ribadeneira, B. J. Aungst, C. J. Eyermann, and S. M. Huang. Effects of structural modifications on the intestinal permeability of angiotensin II receptor antagonists and the correlation of in vitro, in situ, and in vivo absorption. Pharm.Res. 13: 227-233 (1996).Google Scholar
  23. 23.
    C. Pauli-Magnus, O. von Richter, O. Burk, A. Ziegler, T. Mettang, M. Eichelbaum, and M. F. Fromm. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J.Pharmacol.Exp.Ther. 293:376-382 (2000).Google Scholar
  24. 24.
    A. Crowe and M. Lemaire. In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm.Res. 15:1666-1672 (1998).Google Scholar
  25. 25.
    P. F. Augustijns, T. P. Bradshaw, L. S. Gan, R. W. Hendren, and D. R. Thakker. Evidence for a polarized efflux system in CACO-2 cells capable of modulating cyclosporin A transport. Biochem Biophys.Res.Commun. 197:360-365 (1993).Google Scholar
  26. 26.
    G. L. Amidon, M. Chang, D. Fleisher, and R. Allen. Intestinal absorption of amino acid derivatives: importance of the free alpha-amino group. J.Pharm.Sci. 71:1138-1141 (1982).Google Scholar
  27. 27.
    G. L. Amidon, P. J. Sinko, and D. Fleisher. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm.Res. 5:651-654 (1988).Google Scholar
  28. 28.
    D. I. Friedman and G. L. Amidon. Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm.Res. 6:1043-1047 (1989).Google Scholar
  29. 29.
    D. M. Oh, P. J. Sinko, and G. L. Amidon. Characterization of the oral absorption of some beta-lactams: effect of the alpha-amino side chain group. J.Pharm.Sci. 82:897-900 (1993).Google Scholar
  30. 30.
    P. J. Sinko, G. D. Leesman, and G. L. Amidon. Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharm.Res. 8:979-988 (1991).Google Scholar
  31. 31.
    N. Takamatsu, L. S. Welage, N. M. Idkaidek, D. Y. Liu, P. I. Lee, Y. Hayashi, J. K. Rhie, H. Lennernas, J. L. Barnett, V. P. Shah, L. Lesko, and G. L. Amidon. Human intestinal permeability of piroxicam, propranolol, phenylalanine, and PEG 400 determined by jejunal perfusion. Pharm.Res. 14:1127-1132 (1997).Google Scholar
  32. 32.
    N. Takamatsu, O. N. Kim, L. S. Welage, N. M. Idkaidek, Y. Hayashi, J. Barnett, R. Yamamoto, E. Lipka, H. Lennernas, A. Hussain, L. Lesko, and G. L. Amidon. Human jejunal permeability of two polar drugs: cimetidine and ranitidine. Pharm.Res. 18:742-744 (2001).Google Scholar
  33. 33.
    G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm.Res. 12:413-420 (1995).Google Scholar
  34. 34.
    X. Y. Chu, G. P. Sanchez-Castano, K. Higaki, D. M. Oh, C. P. Hsu, and G. L. Amidon. Correlation between epithelial cell permeability of cephalexin and expression of intestinal oligopeptide transporter. J.Pharmacol.Exp.Ther. 299:575-582 (2001).Google Scholar
  35. 35.
    N. Takamatsu, L. S. Welage, N. M. Idkaidek, D. Y. Liu, P. I. Lee, Y. Hayashi, J. K. Rhie, H. Lennernas, J. L. Barnett, V. P. Shah, L. Lesko, and G. L. Amidon. Human intestinal permeability of piroxicam, propranolol, phenylalanine, and PEG 400 determined by jejunal perfusion. Pharm.Res. 14:1127-1132 (1997).Google Scholar
  36. 36.
    A. H. Dantzig, J. A. Hoskins, L. B. Tabas, S. Bright, R. L. Shepard, I. L. Jenkins, D. C. Duckworth, J. R. Sportsman, D. Mackensen, and P. R. Rosteck. Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science 264:430-433 (1994).Google Scholar
  37. 37.
    G. Thoidis, T. Kupriyanova, J. M. Cunningham, P. Chen, S. Cadel, T. Foulon, P. Cohen, R. E. Fine, and K. V. Kandror. Glucose transporter Glut3 is targeted to secretory vesicles in neurons and PC12 cells. J.Biol.Chem. 274:14062-14066 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Duxin Sun
    • 1
  • Hans Lennernas
    • 2
  • Lynda S. Welage
    • 1
  • Jeffery L. Barnett
    • 3
  • Christopher P. Landowski
    • 1
  • David Foster
    • 1
  • David Fleisher
    • 1
  • Kyung-Dall Lee
    • 1
  • Gordon L. Amidon
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyUniversity of MichiganAnn Arbor
  2. 2.Department of Pharmacy, Group of BiopharmaceuticsUppsala UniversityUppsalaSweden
  3. 3.Department of Internal MedicineUniversity of Michigan Medical SchoolAnn Arbor

Personalised recommendations