Pharmaceutical Research

, Volume 19, Issue 10, pp 1509–1515

Effect of Organic Isothiocyanates on the P-Glycoprotein- and MRP1-Mediated Transport of Daunomycin and Vinblastine

Article

Abstract

Purpose. Organic isothiocyanates (ITCs), or mustard oils, are non-nutrient components present in the diet, especially in cruciferous vegetables. The purpose of this investigation was to examine the effect of ITCs on P-glycoprotein (P-gp)- and multidrug resistance-associated Protein (MRP1)-mediated transport in multidrug resistant (MDR) human cancer cell lines.

Methods. The direct effect of ITCs on the 2-h cellular accumulation of daunomycin (DNM) and vinblastine (VBL), substrates for both P-gp and MRP1, were measured in sensitive and resistant MCF-7 cells and in PANC-1 cells. Resistant MCF-7 cells (MCF-7/ADR) overexpress P-gp whereas PANC-1 cells overexpress MRP1. The following compounds were evaluated: allyl-, benzyl-(BITC), hexyl-, phenethyl-(PEITC), phenyl-, 1-naphthyl-(NITC), phenylhexyl-, phenylpropyl-, and phenylbutyl-ITC, sulforaphane, erucin, and erysolin.

Results. NITC significantly increased the accumulation of DNM and VBL in both resistant cell lines, but had no effect on DNM accumulation in sensitive MCF-7 cells. VBL accumulation in resistant MCF-7 cells was increased 40-fold by NITC whereas that in PANC-1 cells was increased 5.5-fold. Significant effects on the accumulation of DNM and VBL in resistant MCF-7 cells were also observed with benzyl-isothiocyanate whereas PEITC, erysolin, phenylhexyl-ITC, and phenylbutyl-ITC increased the accumulation of DNM and/or VBL in PANC-1 cells. Overall, the inhibitory activities of these compounds in MCF-7 cells and PANC-1 cells were significantly correlated (r2= 0.77 and 0.86 for DNM and VBL, respectively). Significant effects on accumulation were generally observed with the ITCs at 50 μM concentrations, but not at 10 μM concentrations.

Conclusions. One strategy to enhance the effectiveness of cancer chemotherapy is to reverse the MDR phenomena. Our results indicate that certain dietary ITCs inhibit the P-gp- and the MRP1-mediated efflux of DNM and VBL in MDR cancer cells and suggest the potential for diet-drug interactions.

multidrug resistance phenethylisothiocyanate benzylisothiocyanate naphthylisothiocyanate cancer chemotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. Pastan and M. M. Gottesman. Multidrug Resistance. Annu.Rev.Med. 42:277-286 (1991).Google Scholar
  2. 2.
    D. M. Bradshaw and R. J. Arceci. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J.Clin.Oncol. 16:3674-3690 (1998).Google Scholar
  3. 3.
    M. Gottesman and I. Pastan. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu.Rev.Biochem. 62:385-427 (1993).Google Scholar
  4. 4.
    F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc.Natl.Acad.Sci.USA 84:7735-7738 (1987).Google Scholar
  5. 5.
    S. Cole, G. Bhardwaj, J. Gerlach, J. Mackie, C. Grant, K. Almquist, A. Stewart, S. Kurz, A. Duncan, and R. Deeley. Overexpression of a transporter gene in a multidrug resistant human lung cancer cell line. Science 258:1650-1654 (1992).Google Scholar
  6. 6.
    G. Kruh, K. Gaughan, A. Godwin, and A. Chan. Expression of MRP in human tissues and adult solid tumor cell lines. J.Natl.Cancer Inst. 87:1256-1258 (1995).Google Scholar
  7. 7.
    P. Borst, R. Evers, M. Kool, and J. Wijnholds. A family of drug transporters: the multidrug resistance-associated proteins. J.Natl.Cancer Inst. 92:1295-1302 (2000).Google Scholar
  8. 8.
    R. Krishna and L. D. Mayer. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur.J.Pharm.Sci. 11:265-283 (2000).Google Scholar
  9. 9.
    Y. Zhang and P. Talalay. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res. 54: 1976s-1981s (1994).Google Scholar
  10. 10.
    A. Kamath and M. Morris. Functional expression of P-glycoprotein in the hepatic canalicular membrane of developing rats. J.Pharm.Sci. 87:300-305 (1998).Google Scholar
  11. 11.
    P. Wils, V. Phung-Ba, A. Warnery, D. Lechardeur, S. Raeissi, I. J. Hidalgo, and D. Scherman. Polarized transport of docetaxel and vinblastine mediated by p-glycoprotein in human intestinal epithelial cell monolayers. Biochem.Pharmacol. 48:1528-1530 (1994).Google Scholar
  12. 12.
    M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem. 72:248-254 (1976).Google Scholar
  13. 13.
    G. C. Yeh, J. Lopaczynska, C. M. Poore, and J. M. Phang. A new functional role for P-glycoprotein: Efflux pump for benzo(alpha)-pyrene in human breast cancer MCF-7 cells. Cancer Res. 52:6692-6695 (1992).Google Scholar
  14. 14.
    D. W. Miller, M. Fontain, C. Kolar, and T. Lawson. The expression of multidrug resistance-associated protein (MRP) in pancreatic adenocarcinoma cell lines. Cancer Lett. 107:301-306 (1996).Google Scholar
  15. 15.
    S. Benchimol and V. Ling. P-glycoprotein and tumor progression. J.Natl.Cancer Inst. 86:814-816 (1994).Google Scholar
  16. 16.
    M. A. Barrand, T. Bagrij, and S. Y. Neo. Multidrug resistance-associated protein: a protein distinct from P-glycoprotein involved in cytotoxic drug expulsion. Gen.Pharmacol. 28:639-645 (1997).Google Scholar
  17. 17.
    K. Buser, F. Joncourt, H. J. Altermatt, M. Bacchi, A. Oberli, and T. Cerny. Breast cancer: Pretreatment drug resistance parameters (GSH-system, ATPase, P-glycoprotein) in tumor tissue and their correlation with clinical and prognostic characteristics. Ann. Oncol. 8:335-341 (1997).Google Scholar
  18. 18.
    S. S. Hecht. Chemoprevention of lung cancer by isothiocyanates. Adv.Exp.Med. Biol. 401:1-11 (1996).Google Scholar
  19. 19.
    G. J. Kelloff, J. A. Crowell, V. E. Steele, R. A. Lubet, W. A. Malone, C. W. Boone, L. Kopelovich, E. T. Hawk, R. Lieberman, J. A. Lawrence, I. Ali, J. L. Viner, and C. C. Sigman. Progress in cancer chemoprevention: Development of diet-derived chemopreventive agents. J.Nutr. 130:467S-471S (2000).Google Scholar
  20. 20.
    L. Gamet-Payrastre, P. Li, S. Lumeau, G. Cassar, M. A. Dupont, S. Chevolleau, N. Gasc, J. Tulliez, and F. Terce. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60: 1426-1433 (2000).Google Scholar
  21. 21.
    C. Huang, W. Y. Ma, J. Li, S. S. Hecht, and Z. Dong. Essential role of p53 in phenethyl isothiocyanate-induced apoptosis. Cancer Res. 58:4102-4106 (1998).Google Scholar
  22. 22.
    A. B. Shapiro and V. Ling. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur.J.Biochem. 250:130-137 (1997).Google Scholar
  23. 23.
    A. B. Shapiro, K. Fox, P. Lam, and V. Ling. Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur.J.Biochem 259: 841-850 (1999).Google Scholar
  24. 24.
    J. Renes, E. G. de Vries, E. F. Nienhuis, P. L. Jansen, and M. Muller. ATP-and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br.J.Pharmacol. 126:681-688 (1999).Google Scholar
  25. 25.
    C. G. Dietrich, R. Ottenhoff, D. R. de Waart, and R. P. Oude Elferink. Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology 167:73-81 (2001).Google Scholar
  26. 26.
    L. Liebes, C. C. Conaway, H. Hochster, S. Mendoza, S. S. Hecht, J. Crowell, and F.-L. Chung. High-performance liquid chromatography-based determination of total isothiocyanate levels in human plasma: Application to studies with 2-phenethyl isothiocyanate. Anal.Biochem. 291:279-289 (2001).Google Scholar
  27. 27.
    M. R. Spitz, C. M. Duphorne, M. A. Detry, P. C. Pillow, C. I. Amos, L. Lei, M. de Andrade, X. Gu, W. K. Hong, and X. Wu. Dietary intake of isothiocyanates: Evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol.Biomarkers Prev. 9:1017-1020 (2000).Google Scholar
  28. 28.
    B. Zhao, A. Seow, E. J. Lee, W. T. Poh, M. Teh, P. Eng, Y. T. Wang, and W. C. Tan, M. C. Yu, and H. P. Lee. Dietary isothiocyanates, glutathione S-transferase-M1,-T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidemiol.Biomarkers Prev. 10:1063-1067 (2001).Google Scholar
  29. 29.
    Y. Zhang. Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21:1175-1182 (2000).Google Scholar
  30. 30.
    K. V. Speeg, A. L. Maldonado, J. Liaci, and D. Muirhead. Effect of cyclosporine on colchicine secretion by the kidney multidrug transporter studied in vivo. J.Pharmacol. Exp.Ther. 261:50-55 (1992).Google Scholar
  31. 31.
    A. Sparreboom, J. van Asperen, U. Mayer, A. H. Schinkel, J. W. Smit, D. K. Meijer, P. Borst, W. J. Nooijen, J. H. Beijnen, and O. van Tellingen. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc.Natl.Acad.Sci.USA 94:2031-2035 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Elaine Tseng
    • 1
  • Amrita Kamath
    • 1
  • Marilyn E. Morris
    • 1
  1. 1.Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesUniversity at Buffalo, The State University of New York at BuffaloAmherst
  2. 2.Groton LaboratoriesPfizer Inc.Groton
  3. 3.Bristol Myers SquibbPrinceton

Personalised recommendations