Journal of Polymers and the Environment

, Volume 9, Issue 3, pp 115–124 | Cite as

Effect of Pretreatment with UV Radiation on Physical and Mechanical Properties of Photocured Jute Yarn with 1,6-Hexanediol Diacrylate (HDDA)

  • Mubarak A. KhanEmail author
  • S. Shehrzade
  • M. Sarwar
  • U. Chowdhury
  • M. M. Rahman


Jute yarns were grafted with a single impregnating monomer 1,6-hexanediol diacrylate (HDDA) in order to improve the physicomechanical properties. Jute yarns soaked for different soaking times (3, 5, 10, and 30 minutes) in HDDA+MeOH solutions at different proportions (1–10% HDDA in MeOH [v/v] along with photoinitiator Darocur-1664 [3%]) were cured under UV lamp at different UV radiation intensities (two, four, six, and eight passes). Concentration of monomer, soaking time, and intensity of UV radiation were optimized with extent of mechanical properties such as tensile strength, elongation at break, and modulus. Enhanced tensile strength (67%), modulus (108%), and polymer loading (11%) were achieved with 5% HDDA concentration, 5-minute soaking time, fourth pass of UV radiation. To further improve the mechanical properties, the jute yarns were pretreated with UV radiation (5, 10, 15, 30, and 50 passes) and treated with optimized monomer concentration (5%). UV-pretreated samples showed the enhanced properties. The tensile strength and modulus increase up to 84% and 132%, respectively, than that of virgin jute yarn. An experiment involving water absorption capacity shows that water uptake by treated samples was much lower than that of the untreated samples. During the weathering test, treated yarns exhibited less loss of mechanical properties than untreated yarns.

Jute natural fiber UV radiation photocuring surface modification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Amin, M. A. Bhuiyan, and A. J. Mian (1990) J. Text. Inst. 8(2), 167.Google Scholar
  2. 2.
    A. C. Karmaker and G. Hinrichsen (1991) Polym. Plast. Technol. Eng. 30, 609.Google Scholar
  3. 3.
    S. R. Ranganathan and P. K. Pal (1985) Popular Plast. 41, M. A. Semsarzadeh; (1986) Polym. Comp. (1), 29.Google Scholar
  4. 4.
    A. K. Mohanty, M. A. Khan, and G. Hinrichsen (2000) Comp. Sci. Technol. 60, 1115-1124.Google Scholar
  5. 5.
    A. K. Mohanty, M. A. Khan, and G. Hinrichsen (2002) Composite Part A 31, 143-150.Google Scholar
  6. 6.
    M. A. Khan, K. M. I. Ali, M. R. Al-Imam, and R. J. Manan (1997) Polym. Plast. Technol. Eng. 36(1), 89-104.Google Scholar
  7. 7.
    M. A. Khan and K. M. I. Ali (1999) Adv. Polym. Technol. 18(3), 267-274.Google Scholar
  8. 8.
    M. A. Khan, M. K. Uddin, M. N. Islam, and K. M. I. Ali (1995) J. Appl. Polym. Sci. 58, 31-39.Google Scholar
  9. 9.
    M. A. Khan, M. N. Islam, and K. M. I. Ali (1996) Polym. Plast. Technol. Eng. 35, 299.Google Scholar
  10. 10.
    K. M. I. Ali, M. A. Khan, and M. N. Islam (1994) Polym. Plast. Technol. Eng. 35, 53.Google Scholar
  11. 11.
    K. M. I. Ali, M. A. Khan, M. A. Ali, and K. S. Akhunzada (1999), J. Appl. Polym. Sci. 71, 841-846.Google Scholar
  12. 12.
    M. K. Uddin, M. A. Khan, and K. M. I. Ali (1997) Polym. Degrad. Stabil. 55, 1-7.Google Scholar
  13. 13.
    J. Reine and J. C. Arthur Jr. (1970) Text. Res. J. 40, 90.Google Scholar
  14. 14.
    S. K. Datta, T. K. Chaki, and A. K. Bhoumik (1996) Radiant. Phys. Chem. 47, 913.Google Scholar
  15. 15.
    K. M. I. Ali, M. A. Khan, and M. N. Islam (1996) Polym. Plast. Technol. Eng. 32(c), 299.Google Scholar
  16. 16.
    S. Dilli and J. L. Garnett (1971) Aus. J. Chem. 24, 981.Google Scholar
  17. 17.
    S. Dilli and J. L. Garnett (1970) Aus. J. Chem. 23, 981.Google Scholar
  18. 18.
    K. M. I. Ali, M. A. Khan, and M. Azam Ali (1997) Radiant. Phys. Chem. 49(3), 383-388.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Mubarak A. Khan
    • 1
    • 2
    Email author
  • S. Shehrzade
    • 1
  • M. Sarwar
  • U. Chowdhury
    • 1
  • M. M. Rahman
    • 3
  1. 1.Radiation and Polymer Chemistry LaboratoryInstitute of Nuclear Science and Technology, Bangladesh Atomic Energy CommissionDhakaBangladesh
  2. 2.Bangladesh Institute of TechnologyGazipurBangladesh
  3. 3.Department of Applied Chemistry and Chemical TechnologyUniversity of DhakaDhakaBangladesh

Personalised recommendations