Complete protein structure determination using backbone residual dipolar couplings and sidechain rotamer prediction

  • Michael Andrec
  • Yuichi Harano
  • Matthew P. Jacobson
  • Richard A. Friesner
  • Ronald M. Levy


Residual dipolar couplings provide significant structural information for proteins in the solution state, which makes them attractive for the rapid determination of protein structures. While dipolar couplings contain inherent structural ambiguities, these can be reduced via an overlap similarity measure that insists that protein fragments assigned to overlapping regions of the sequence must have self-consistent structures. This allows us to determine a backbone fold (including the correct Cα–Cβ bond orientations) using only residual dipolar coupling data from one ordering medium. The resulting backbone structures are of sufficient quality to allow for modeling of sidechain rotamer states using a rotamer prediction algorithm and a force field employing the Surface Generalized Born continuum solvation model. We demonstrate the applicability of the method using experimental data for ubiquitin. These results illustrate the synergies that are possible between protein structural database and molecular modeling methods and NMR spectroscopy, and we expect that the further development of these methods will lead to the extraction of high resolution structural information from minimal NMR data.


Dipolar Coupling Residual Dipolar Coupling Continuum Solvation Coupling Data Continuum Solvation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moseley, H.N.B., and Montelione, G.T. (1999) Curr. Opinion Struct. Biol. 9, 635–642.Google Scholar
  2. 2.
    Prestegard, J.H., Tolman, J.R., Al-Hashimi, H.M., and Andrec, M. (1999) In Structure Computation and Dynamics in Protein NMR, (Eds., Krishna, N.R., and Berliner, L.J.) Plenum Publishers, New York. pp. 311–355.Google Scholar
  3. 3.
    Tjandra, N. and Bax, A. (1997) Science 278, 1111–1114.Google Scholar
  4. 4.
    Hansen, M.R., Mueller, L., and Pardi, A. (1998) Nature Struct. Biol. 5, 1065–1074.Google Scholar
  5. 5.
    Clore, G.M., Starich, M.R., and Gronenborn, A.M. (1998) J. Am. Chem. Soc. 120, 10571–10572.Google Scholar
  6. 6.
    Tjandra, N. (1999) Structure 7, R205–R211.Google Scholar
  7. 7.
    Andrec, M., Du, P., and Levy, R.M. (2001) J. Am. Chem. Soc. 123, 1222–1229.Google Scholar
  8. 8.
    Annila, A., Aitio, H., Thulin, E., and Drakenberg, T. (1999) J. Biomol. NMR 14, 223–230.Google Scholar
  9. 9.
    Delaglio, F., Kontaxis, G., and Bax, A. (2000) J. Am. Chem. Soc., 122, 2142–2143.Google Scholar
  10. 10.
    Hus, J.-C., Marion, D., and Blackledge, M. (2001) J. Am. Chem. Soc. 123, 1541–1542.Google Scholar
  11. 11.
    Meiler, J., Peti, W., and Griesinger, C. (2000) J. Biomol. NMR 17, 283–294.Google Scholar
  12. 12.
    Andrec, M., Du, P., and Levy, R.M. (2001) J. Biomol. NMR 21, 335–347.Google Scholar
  13. 13.
    Saupe, A. (1968) Angew. Chem. Internat. Ed. 7, 97–112.Google Scholar
  14. 14.
    Losonczi, J.A., Andrec, M., Fischer, M.W.F., and Prestegard, J.H. (1999) J. Magn. Reson. 138, 334–342.Google Scholar
  15. 15.
    Cornilescu, G., Marquardt, J.L., Ottiger, M., and Bax, A. (1998) J. Am. Chem. Soc. 120, 6836–6837.Google Scholar
  16. 16.
    Brenner, S.E., Chothia, C., and Hubbard, T.J.P. (1998) Proc. Natl. Acad. Sci. USA 95, 6073–6078.Google Scholar
  17. 17.
    Ottiger, M., and Bax, A. (1998) J. Am. Chem. Soc. 120, 12334–12341.Google Scholar
  18. 18.
    Shindyalov, I.N., and Bourne, P.E. (1998) Prot. Eng. 11, 739–747.Google Scholar
  19. 19.
    Kabsch, W. (1978) Acta Cryst. A 34, 827–828.Google Scholar
  20. 20.
    Moltke, S., and Grzesiek, S. (1999) J. Biomol. NMR 15, 77–82.Google Scholar
  21. 21.
    Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J. (1996) J. Am. Chem. Soc. 118, 11225–11236.Google Scholar
  22. 22.
    Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., and Jorgensen, W.L. (2001) J. Phys. Chem. B 105, 6474–6487.Google Scholar
  23. 23.
    Ghosh, A., Rapp, C.S., and Friesner, R.A. (1998) J. Phys. Chem. B 102, 10983–10990.Google Scholar
  24. 24.
    Xiang, Z., and Honig, B. (2001) J. Mol. Biol. 311, 421–430.Google Scholar
  25. 25.
    Bruccoleri, R.E., and Karplus, M. (1987) Biopolymers 26, 137–168.Google Scholar
  26. 26.
    Xie, D., and Schlick, T. (1999) SIAM J. Optim. 10, 132–154.Google Scholar
  27. 27.
    Vijay-Kumar, S., Bugg, C.E., and Cook, W.J. (1987) J. Mol. Biol. 194, 531–544.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Michael Andrec
    • 1
  • Yuichi Harano
    • 1
  • Matthew P. Jacobson
    • 2
  • Richard A. Friesner
    • 2
  • Ronald M. Levy
    • 1
  1. 1.Department of Chemistry and Chemical Biology, RutgersThe State University of New JerseyPiscatawayUSA
  2. 2.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations