Molecular Biology Reports

, Volume 29, Issue 3, pp 317–323

Screen and identification of proteins interacting with ADAM19 cytoplasmic tail

  • Li Huang
  • Libing Feng
  • Limin Yang
  • Weiguo Zhou
  • Shouyuan Zhao
  • Changben Li


ADAM family plays important roles in neurogenesis. The cytoplasmic tail of ADAM19 (ADAM19-CT) contains 193 residues. The presence of two putative SH3 ligand-bianding sites suggests potential interactions with cytosolic proteins, which could be possibly linked to the functions of ADAM19. To address these issues, a yeast two-hybrid screen was performed in human fetal brain cDNA library to isolate proteins that interact with the cytoplasmic tail of ADAM19. Four proteins were obtained, ArgBP1, β-cop, ubiquitin and a novel protein. GST-Pulldown assay has confirmed the interaction between AdAM19 and ArgBP1. By constructing series of deletion mutants of ADAM19-CT and ArgBP1 respectively, the interaction regions have been identified. They are the SH3 binding sites in ADAM19-CT and the P4 region in ArgBP1. And the interaction is specific. ArgBP1 does not bind to ADAM22, ADAM29 or ADAM9 (mouse). ArgBP1may be the key protein, which accounts for the physiological function of ADAM19.

ADAM ArgBP1 yeast two-hybrid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huovila APJ, Almeida EA & White JM (1996) ADAMs and cell fusion. Curr Opin Cell Biol. 8(5): 692–699Google Scholar
  2. 2.
    Wolfsberg TG, Primakoff P, Myles DG & White JM (1995) ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions J. Cell Biol. 131(2): 275–278Google Scholar
  3. 3.
    Qi H, RandMD, Wu X, Sestan N, Wang W, Rakic P, Xu, T & Artavanis-Tsakonas, S (1999) Processing of the Notch ligand Delta by the metalloprotease Kuzbanian. Science. 283(5398): 91–94Google Scholar
  4. 4.
    Shirakabe K, Wakatsuki S, Kurisaki T et al. (2001) Roles of Meltrin beta /ADAM19 in the processing of neuregulin. J. Biol. Chem. 276(12): 9352–9358Google Scholar
  5. 5.
    Fritsche J, Moser M, Faust S et al. (2000) Molecular cloning and characterization of a human metalloprotease disintegrin–a novel marker for dendritic cell differentiation. Blood. 96(2): 732–739Google Scholar
  6. 6.
    Sambrook J, Fretsch EF, Maniatis T et al. (1989) Molecular Cloning: A Laboratory Manual. 2nd Ed. New York: Cold Spring Harbor Laboratory Press. 16–55Google Scholar
  7. 7.
    Ausubel FM, Brent R, Kingston RE et al. (1993) Current Protocols in Molecular Biology.2nd Ed. New York: Greene Publishing Associations and John Wiley & Sons. Volume 2, Chapter 13.13Google Scholar
  8. 8.
    Howard L, Nelson KK, Maciewicz RA, et al. (1999) Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem. 274(44): 31693–31699Google Scholar
  9. 9.
    Kang Q, Cao Y, Zolkiewska A (2000) Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells. Biochem. J. 352(3): 883–s892Google Scholar
  10. 10.
    Galliano MF, Huet C, Frygelius J et al. (2000) Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha-actinin-2, is required for myoblast fusion. J. Biol. Chem. 275(18): 13933–13939Google Scholar
  11. 11.
    Izumi Y, Hirata M, Hasuwa H et al. (1998) A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. 17(24): 7260–7272Google Scholar
  12. 12.
    Wang B, Mysliwiec T, Krainc D (1996) Identification of ArgBP1, an Arg protein tyrosine kinase binding protein that is the human homologue of a CNS-specific Xenopus gene. Oncogene 12(9): 1921–1929Google Scholar
  13. 13.
    Kruh GD, Perego R, Miki T et al. (1990) The complete coding sequence of arg defines the Abelson subfamily of cytoplasmic tyrosine kinases. Proc Natl Acad Sci USA 87(15): 5802–5806Google Scholar
  14. 14.
    Wang JY (1993) Abl tyrosine kinase in signal transduction and cell cycle regulation. Curr Opin Genet Dev. 3(1): 35–43Google Scholar
  15. 15.
    Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372(6501): 55–63Google Scholar
  16. 16.
    Bennett MK (1995) SNAREs and the specificity of transport vesicle targeting. Curr. Opin. Cell. Biol. 7(4): 581–586Google Scholar
  17. 17.
    Calakos N, Scheller RH (1996) Synaptic vesicle biogenesis, docking, and fusion: A molecular description. Physiol Rev. 76(1): 1–29Google Scholar
  18. 18.
    Rechsteiner M (1990) PEST sequences are signals for rapid intracellular proteolysis. Semin. Cell Biol. 1(6): 433–440Google Scholar
  19. 19.
    Weskamp G, Kratzschmar J, Reid MS et al. (1996) MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J. Cell Biol. 132(4): 717–726Google Scholar
  20. 20.
    Lum L, Reid MS, Blobel CP (1998) Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J. Biol. Chem. 273(40): 26236–26247Google Scholar
  21. 21.
    Roghani M et al. (1999) Metalloprotease-disintegrin MDC9: Intracellular maturation and catalytic activity. J. Biol. Chem. 274(6): 3531–3540Google Scholar
  22. 22.
    Wang JY (1993) Abl tyrosine kinase in signal transduction and cell-cycle regulation. Curr. Opin. Genet. Dev. 3: 35–43Google Scholar
  23. 23.
    Ping Wei, Yun-Ge Zhao, Li Zhuang et al. (2001) Expression and Enzymatic Activity of Human Disintegrin and Metalloprotease ADAM19/Meltrin Beta. Biochem. Biophys. Res. Communic. 280: 744–755Google Scholar
  24. 24.
    Cruz C, Ventura F, Bartrons R, Rosa JL (2001) HERC3 binding to and regulation by ubiquitin. FEBS Lett. 488(1–2): 74–80Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Li Huang
    • 1
  • Libing Feng
    • 1
  • Limin Yang
    • 1
  • Weiguo Zhou
    • 1
  • Shouyuan Zhao
    • 1
  • Changben Li
    • 1
  1. 1.Institute of GeneticsFudan UniversityShanghaiP.R. China

Personalised recommendations