Journal of Statistical Physics

, Volume 109, Issue 3–4, pp 529–548 | Cite as

Scaling Dynamics of a Massive Piston in a Cube Filled with Ideal Gas: Exact Results

  • N. Chernov
  • J. L. Lebowitz
  • Ya. Sinai
Article

Abstract

We continue the study of the time evolution of a system consisting of a piston in a cubical container of large size L filled with an ideal gas. The piston has mass ML2 and undergoes elastic collisions with NL3 gas particles of mass m. In a previous paper, Lebowitz et al. considered a scaling regime, with time and space scaled by L, in which they argued heuristically that the motion of the piston and the one particle distribution of the gas satisfy autonomous coupled differential equations. Here we state exact results and sketch proofs for this behavior.

Piston ideal gas hydrodynamic limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. L. Lebowitz, J. Piasecki, and Ya. Sinai, Scaling dynamics of a massive piston in an ideal gas, in Hard Ball Systems and the Lorentz Gas, Encycl. Math. Sci., Vol. 101 (Springer, Berlin, 2000), pp. 217–227.Google Scholar
  2. 2.
    N. Chernov, J. L. Lebowitz, and Ya. Sinai, Dynamic of a Massive Piston in an Ideal Gas, preprint, available at www.math.uab.edu/chernov/pubs/.Google Scholar
  3. 3.
    Ch. Gruber, Thermodynamics of systems with internal adiabatic constraints: Time evolution of the adiabatic piston, Eur. J. Phys. 20:259–266 (1999).Google Scholar
  4. 4.
    Ch. Gruber and L. Frachenberg, On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states, Phys. A 272:392–428 (1999).Google Scholar
  5. 5.
    Ch. Gruber, J. Piasecki, Stationary motion of the adiabatic piston, Phys. A 268:412–423 (1999).Google Scholar
  6. 6.
    E. Kestemont, C. Van den Broeck, and M. Mansour, The ''adiabatic'' piston: And yet it moves, Europhys. Lett. 49:143–149 (2000).Google Scholar
  7. 7.
    E. Lieb, Some problems in statistical mechanics that I would like to see solved, Physica A 263:491–499 (1999).Google Scholar
  8. 8.
    N. Chernov and J. L. Lebowitz, Dynamics of a Massive Piston in an Ideal Gas: Oscillatory Motion and Approach to Equilibrium, this volume of the journal.Google Scholar
  9. 9.
    A. N. Kolmogorov and V. M. Tihomirov, e-entropy and e-capacity of sets in function spaces, Amer. Math. Soc. Transl. 17:277–364 (1961).Google Scholar
  10. 10.
    R. Holley, The motion of a heavy particle in an infinite one dimensional gas of hard spheres, Z. Wahrschein. verw. Geb. 17:181–219 (1971).Google Scholar
  11. 11.
    D. Dürr, S. Goldstein, and J. L. Lebowitz, A mechanical model of Brownian motion, Commun. Math. Phys. 78:507–530 (1981).Google Scholar
  12. 12.
    E. Caglioti, N. Chernov, J. L. Lebowitz, and E. Presutti, in preparation.Google Scholar
  13. 13.
    J. L. Lebowitz, Stationary nonequilibrium Gibbsian ensembles, Phys. Rev. 114:1192–1202 (1959).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • N. Chernov
    • 1
  • J. L. Lebowitz
    • 2
  • Ya. Sinai
    • 3
  1. 1.Department of MathematicsUniversity of Alabama at Birmingham
  2. 2.Department of MathematicsRutgers University
  3. 3.Department of MathematicsPrinceton University

Personalised recommendations