Neuroscience and Behavioral Physiology

, Volume 32, Issue 6, pp 589–593

The Effects of Carbachol on the Proximal and Distal Parts of Frog Motor Nerve Endings

  • R. A. Giniatullin
  • D. V. Samigullin
  • S. N. Grishin
  • É. A. Bukharaeva


Cholinomimetics not only activate postsynaptic cholinoreceptors in neuromuscular synapses, but also alter the process of acetylcholine secretion from nerve endings. However, the mechanism of action of cholinomimetics on the secretory process remains unidentified. We approached the question of the mechanism of the presynaptic action of cholinomimetics in the present study by investigating the effects of the n,m-cholinomimetic carbachol on nerve ending currents and postsynaptic membrane currents. Carbachol induced decreases in the postsynaptic response, without affecting the duration and amplitude of the nerve ending current in both the central and distal part of the nerve ending. However, carbachol increased the time between the arrival of the presynaptic action potential and the start of transmitter secretion. This effect on synaptic delay was more marked in the distal parts of the ending. The action of another potential modulator, extracellular potassium, was accompanied by decreases in presynaptic currents and also by increases in synaptic delay. These data provide evidence for the suppressive effect of carbachol on acetylcholine secretion acting via presynaptic metabotropic cholinoreceptors which control the level and time course of secretion of neurotransmitter quanta.

synapse muscle acetylcholine carbachol nerve ending 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    É. A. Bukharaeva, E. E. Nikol'skii, and R. A. Giniatullin, “The effects of cholinergic compounds on the spontaneous quantum release of transmitter in frog neuromuscular synapses,” Neirofiziologiya, 18, No. 5, 586–593 (1986).Google Scholar
  2. 2.
    I. N. Volkova, E. E. Nikol'skii, and G. I. Poletaev, “Blockade of action potentials and skeletal muscle contraction in the frog by transection,” Fiziol. Zh. SSSR, 61, No. 9, 1433–1436 (1975).Google Scholar
  3. 3.
    I. N. Volkova, E. E. Nikol'skii, and R. A. Giniatullin, “Is the presynaptic action of carbachol associated with activation of the postsynaptic membrane?” Byull. Éksp. Biol. Med., 91, No. 4, 393–396 (1981).Google Scholar
  4. 4.
    R. A. Giniatullin and L. S Khirug, “Comparison of the kinetics of pre-and postsynaptic processes in the neuromuscular synapse using a model of the endplate current,” Neirofiziologiya, 1, No. 4, 126–132 (1993).Google Scholar
  5. 5.
    A. L. Zefirov and I. A. Khalilov, “Characteristics of electrical activity in different parts of frog nerve endings,” Byull. Éksp. Biol. Med., 49, No. 1, 7–10 (1985).Google Scholar
  6. 6.
    A. L. Zefirov and R. S. Kurtasanov, “Transmitter secretion in nerve endings of different lengths and degrees of branching,” Neirofiziologiya, 1, No. 3, 170–175 (1993).Google Scholar
  7. 7.
    E. E. Nikol'skii, “The effects of carbachol on spontaneous transmitter release from motor nerve endings at different extracellular potassium concentrations,” Neirofizologiya, 16, No. 4, 470–474 (1984).Google Scholar
  8. 8.
    E. E. Nikol'skii and R. A. Giniatullin, “Termination of the presynaptic action of carbachol by tubocurarine,” Byull. Éksp. Biol. Med., 87, No. 2, 171–174 (1979).Google Scholar
  9. 9.
    E. E. Nikol'skii and R. A. Giniatullin, “The presynaptic action of carbachol in frog neuromuscular preparations after section of the motor nerve,” Dokl. Akad. Nauk SSSR, 284, No. 6, 250–252 (1984).Google Scholar
  10. 10.
    D. V. Samigullin, I. V. Kovyazina, and É. A. Bukharaeva, “Studies of the time course of endplate currents in the proximal, intermediate, and distal segments of the neuromuscular junction of the frog in control conditions and in the presence of carbachol,” in: Proceedings of the Sixth Russian “Current Problems in Neurobiology” School [in Russian], Kazan' (1999), pp. 100–102.Google Scholar
  11. 11.
    E. Bukharaeva, K. Kim, J. Moravec, E. Nikolsky, and F. Vyskocil, “Noradrenaline synchronizes evoked quantal release at frog neuromuscular junction,” J. Physiol. (London), 517, No. 3, 879–888 (1999).Google Scholar
  12. 12.
    N. Datyner and P. Gage, “Phasic secretion of acetylcholine at a mammalian neuromuscular junction,” J. Physiol. (London), 303, 299–314 (1980).Google Scholar
  13. 13.
    C. J. Duncan and J. Publicover, “Inhibitory effects of cholinergic agents on the release of transmitter at the frog neuromuscular junction,” J. Physiol. (London), 294, 91–103 (1979).Google Scholar
  14. 14.
    R. A. Giniatullin, L. S. Khiroug, and F. Vyskocil, “Modelling endplate currents: dependence on quantum secretion probability and decay of miniature current,” Eur. Biophys. J., 23, 443–446 (1995).Google Scholar
  15. 15.
    Y. Kidokoro, S. Miyazaki, and S. Ozawa, “Acetylcholine-induced membrane depolarization and potential fluctuations in the rat adrenal chromaffin cell,” J. Physiol. (London), 324, 203–220 (1982).Google Scholar
  16. 16.
    A. Mallart, “Presynaptic currents in frog motor endings,” Pflügers Arch., 400, 8–13 (1984).Google Scholar
  17. 17.
    A. Meir, S. Ginsburg, A. Butkevich, S. G. Kachalsky, I. Kaiserman, R. Ahdut, S. Demirgoren, and R. Rahamimoff, “Ion channels in presynaptic nerve terminals and control of transmitter release,” Physiol. Rev., 79, 1019–1088 (1999).Google Scholar
  18. 18.
    M. D. Miyamoto, “The action of cholinergic drugs on motor nerve terminals,” Pharmacol. Rev., 29, 221–247 (1977).Google Scholar
  19. 19.
    E. Nikolsky, E. Bukharaeva, E. Strunsky, and F. Vyskocil, “Depression of miniature endplate potential frequency by acetylcholine and its analogues in frog,” Brit. J. Pharmacol., 104, 1024–1032 (1991).Google Scholar
  20. 20.
    D. Shakirjanova, A. Zefirov, E. Nikolsky, and F. Vyskocil, “The effect of acetylcholine and related drugs on currents at the frog motor nerve terminal,” Eur. J. Pharmacol., 263, 107–114 (1994).Google Scholar
  21. 21.
    O. Slutsky, H. Parnas, and I. Parnas, “Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction,” J. Physiol. (London), 514, No. 3, 769–782 (1999).Google Scholar
  22. 22.
    K. Vaca, D. Johnsson, and L. Pilar, “Modulation of transmitter synthesis and release in cholinergic terminals,” J. Physiol. (London), 78, 385–391 (1982).Google Scholar
  23. 23.
    W. van der Kloot and J. Molgo, “Quantal acetylcholine release at the vertebrate neuromuscular junction,” Physiol Rev., 74, No. 4, 899–991 (1994).Google Scholar
  24. 24.
    A. Wernig, “Estimates of statistical release parameters from crayfish and frog neuromuscular junction,” J. Physiol. (London), 244, 207–221 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • R. A. Giniatullin
    • 1
  • D. V. Samigullin
    • 2
  • S. N. Grishin
    • 1
    • 2
  • É. A. Bukharaeva
    • 2
  1. 1.Kazan' State Medical UniversityKazan'Russia
  2. 2.Kazan' Institute of Biochemistry and BiophysicsRussian Academy of SciencesKazan'Russia

Personalised recommendations