The Macrophage Growth Factor CSF-1 in Mammary Gland Development and Tumor Progression

  • Elaine Y. Lin
  • Valerie Gouon-Evans
  • Andrew V. Nguyen
  • Jeffrey W. Pollard


Colony stimulating factor 1 (CSF-1), a major regulator of the mononuclear phagocytic lineage, is expressed in more than 70% of human breast cancers and its expression is correlated with poor prognosis. Studies of CSF-1 null mutant mice demonstrated that CSF-1 plays an important role in normal mammary ductal development as well as in mammary tumor progression to metastasis. CSF-1 regulates these processes through the recruitment and regulation of macrophages, cells that become associated with mammary tumors and the terminal end buds at the end of the growing ducts. This phenomenon suggests that the tumors subvert normal developmental processes to allow invasion into the surrounding stroma, a process that gives the tumor access to the vasculature and consequently the promotion of metastasis. In addition, soluble CSF-1 secreted from the tumor acts to divert antitumor macrophage responses and suppresses the differentiation of mature tumor-antigen-presenting dendritic cells. This review discusses these observations in detail and attempts to fit them into a larger picture of CSF-1 and macrophage action in the regulation of normal mammary gland development and tumor progression.

CSF-1 macrophages mammary malignant osteopetrotic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Williams and C. W. Daniel (1983). Mammary ductal elon-gation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev.Biol. 97: 274–290.Google Scholar
  2. 2.
    M. C. Neville, D. Medina, J. Monks, and R. C. Hovey (1998). The mammary fat pad. J.Mam.Gland Biol.Neoplasia 3: 109–116.Google Scholar
  3. 3.
    V. Gouon-Evans, M. E. Rothenberg, and J. W. Pollard (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development 127: 2269–2282.Google Scholar
  4. 4.
    M. A. Chrenek, P. Wong, and V. M. Weaver (2001). Tumour–stromal interactions. Integrins and cell adhesions as modu-lators of mammary cell survival and transformation. Breast Cancer Res. 3: 224–229.Google Scholar
  5. 5.
    G. B. Silberstein (2001). Tumour–stromal interactions. Role of the stroma in mammary development. Breast Cancer Res. 3: 218–223.Google Scholar
  6. 6.
    C. O'sullivan and C. E. Lewis (1994). Tumour-associated leucocytes: Friends or foes in breast carcinoma. J.PathoL. 172: 229–235.Google Scholar
  7. 7.
    K. Elgert, D. Alleva, and D. Mullins (1998). Tumor-induced immune dysfunction: The macrophage connection. J.Leukoc. Biol. 64: 275–290.Google Scholar
  8. 8.
    E. R. Stanley (1994). Colony stimulating factor-1 (macrophage colony stimulating factor). In A. W. Thomson (eds.), The Cytokine Handbook, Academic Press, San Diego, pp. 387–418.Google Scholar
  9. 9.
    S. M. Scholl, P. Crocker, R. Tang, P. Pouillart, and J. W. Pollard (1993). Is colony stimulating factor-1 a key mediator in breast cancer invasion and metastasis? Mol.Carcinog. 7: 207–211.Google Scholar
  10. 10.
    E. Y. Lin, A. V. Nguyen, R. G. Russell, and J. W. Pollard (2001). Colony-stimulating factor 1 promotes progression of mam-mary tumors to malignancy. J.Exp.Med. 193: 727–740.Google Scholar
  11. 11.
    S. W. Morris, M. D. Valentine, D. N. Shapiro, J. E. Sublett, L. L. Deaven, J. T. Foust, W. M. Roberts, D. P. Cerretti, and A. T. Look (1991). Reassignment of the human CSF1 gene to chromosome 1p13–p21. Blood 78: 2013–2020.Google Scholar
  12. 12.
    S. Gisselbrecht, B. Sola, S. Fichelson, D. Bordereau, P. Tambourin, M. G. Malter, D. Simon, and J.-L. Guenet (1989). The murine M-CSF gene is localized on chromosome 3. Blood 73: 1742–1746.Google Scholar
  13. 13.
    E. S. Kawasaki and M. B. Ladner (1990). Molecular biology of macrophage colony stimulating factor. In T. M. Dexter, J. M. Garland, and N. G. Testa (eds.), Colony Stimulating Factors: Molecular and Cellular Biology, Marcel Dekker, New York, pp. 155–176.Google Scholar
  14. 14.
    J. W. Pollard and E. R. Stanley (1996). Pleiotropic roles for CSF-1 in development defined by the mouse mutation os-teopetrotic (op). Adv.Dev.Biochem. 4: 153–193.Google Scholar
  15. 15.
    C. J. Sherr, C. W. Rettenmier, R. Sacca, M. S. Roussel, A. T. Look, and E. R. Stanley (1985). The c-fms proto-oncogene product is related to the receptor for the mononuclear phago-cyte growth factor, CSF-1. Cell 41: 665–676.Google Scholar
  16. 16.
    C. J. Sherr (1990). Colony stimulating factor-1 receptor. Blood 75: 1–12.Google Scholar
  17. 17.
    X. F. Csar, N. J. Wilson, K. A. McMahon, D. C. Marks, T. L. Beecroft, A. C. Ward, G. A. Whitty, V. Kanangasun-darum, and J. A. Hamilton (2001). Proteomic analysis of macrophage differentiation. p46/52(Shc) Tyrosine phospho-rylation is required for CSF-1-mediated macrophage differ-entiation. J.Biol.Chem. 276: 26211–26217.Google Scholar
  18. 18.
    R. J. Tushinski, I. T. Oliver, L. J. Guilbert, P. W. Tynan, J. R. Warner, and E. R. Stanley (1982). Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28: 71–81.Google Scholar
  19. 19.
    E. R. Stanley, L. J. Guilbert, R. J. Tushinski, and S. H. Bartelmez (1983). CSF-1–a mononuclear phagocyte lineage-specific hemopoietic growth factor. J.Cell.Biochem. 21: 151–159.Google Scholar
  20. 20.
    S. E. Webb, J. W. Pollard, and G. E. Jones (1996). Direct ob-servation and quantification of macrophage chemoattraction to the growth factor CSF-1. J.Cell Sci. 109: 793–803.Google Scholar
  21. 21.
    C. W. Rettenmier and C. J. Sherr (1989). The mononuclear phagocyte colony-stimulating factor (CSF-1, M-CSF). Hema-tol. Oncol.Clin.North Am. 3: 479–493.Google Scholar
  22. 22.
    R.-P. Ryseck, H. MacDonald-Bravo, and R. Bravo (1991). The macrophage-colony stimulating factor gene is a growth factor-inducible immediate early gene in fibroblasts. N.Biol. 3: 151–157.Google Scholar
  23. 23.
    G. R. Ryan, X. M. Dai, M. G. Dominguez, W. Tong, F. Chuan, O. Chisholm, R. G. Russell, J. W. Pollard, and E. R. Stanley (2001). Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1 op /Csf1 op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 98: 74–84.Google Scholar
  24. 24.
    R. Felix, W. Hofstetter, A. Wetterwald, M. G. Cecchini, and H. Fleisch (1994). Role of colony-stimulating factor-1 in bone metabolism. J.Cell.Biochem. 55: 340–349.Google Scholar
  25. 25.
    P. Roth and E. R. Stanley (1992). The biology of CSF-1 and its receptor. Curr.Top.Microbiol.Immunol. 181: 141–147.Google Scholar
  26. 26.
    W. Wiktor-Jedrzejczak, A. Bartocci, A. W. Ferrante Jr., A. Ahmed-Ansari, K. W. Sell, J. W. Pollard, and E. R. Stanley (1990). Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl.Acad.Sci.U.S.A. 87: 4828–4832.Google Scholar
  27. 27.
    M. G. Cecchini, M. G. Dominguez, S. Mocci, A. Wetterwald, R. Felix, H. Fleisch, O. Chisholm, W. Hofstetter, J. W. Pollard, and E. R. Stanley (1994). Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120: 1357–1372.Google Scholar
  28. 28.
    W. Wiktor-Jedrzejczak and S. Gordon (1996). Cytokine reg-ulation of the macrophage (MÁ) system studied using the colony stimulating factor-1-deficient op/op mouse. Physiol. Rev. 76: 927–947.Google Scholar
  29. 29.
    M. Naito, S. Hayashi, H. Yoshida, S. Nishikawa, L. D. Shultz, and K. Takahashi (1991). Abnormal differentiation of tissue macrophage populations in “osteopetrosis” (op) mice defec-tive in the production of macrophage colony-stimulating fac-tor. Am.J.Pathol. 139.Google Scholar
  30. 30.
    M. D. Witmer-Pack, D. A. Hughes, G. Schuler, L. Lawson, A. McWilliam, K. Inaba, R. M. Steinman, and S. Gordon (1993). Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J.Cell Sci. 104: 1021–1029.Google Scholar
  31. 31.
    I. Guleria and J. W. Pollard (2001). Aberrant macrophage and neutrophil population dynamics and impaired Th1 response to Listeria monocytogenes in colony-stimulating factor 1-de-ficient mice. Infect.Immun. 69: 1795–1807.Google Scholar
  32. 32.
    X. Dai, G. R. Ryan, A. J. Hapel, M. G. Dominguez, R. G. Russell, S. Kapp, V. Sylvestre, and E. R. Stanley (2002). Tar-geted disruption of the mouse CSF-1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primititive progenitor cell frequencies and reproductive de-fects. Blood 99: 111–120.Google Scholar
  33. 33.
    J. W. Pollard (1997). Role of colony-stimulating factor-1 in reproduction and development. Mol.Reprod.Dev. 46: 54–61.Google Scholar
  34. 34.
    P. E. Cohen, K. Nishimura, L. Zhu, and J. W. Pollard (1999). Macrophages: Important accessory cells for reproductive function. J.Leukoc.Biol. 66: 765–772.Google Scholar
  35. 35.
    I. Guleria and J. W. Pollard (2000). The trophoblast is a com-ponent of the innate immune system during pregnancy. Nat. Med. 6: 589–593.Google Scholar
  36. 36.
    B. M. Kacinski (1997). CSF-1 and its receptor in breast carci-nomas and neoplasms of the female reproductive tract. Mol. Reprod.Dev. 46: 71–74.Google Scholar
  37. 37.
    S. Ramakrishnan, F. J. Xu, S. J. Brandt, J. E. Niedel, R. C. Bast Jr., and E. L. Brown (1989). Constitutive production of macrophage colony-stimulating factor by human ovarian and breast cancer cell lines. J.Clin.Invest. 83: 921–926.Google Scholar
  38. 38.
    G. Baiocchi, J. J. Kavanagh, M. Talpaz, J. T. Wharton, J. U. Gutterman, and R. Kurzrock (1991). Expression of the macrophage colony-stimulating factor and its receptor in gy-necologic malignancies. Cancer 67: 990–996.Google Scholar
  39. 39.
    H. O. Smith, P. S. Anderson, D. Y. K. Kuo, G. L. Goldberg, C. L. DeVictoria, C. A. Boocock, J. G. Jones, C. D. Runowicz, E. R. Stanley, and J. W. Pollard (1995). The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin.Cancer Res. 1: 313–325.Google Scholar
  40. 40.
    B. M. Kacinski (1995). CSF-1 and its receptor in ovarian, en-dometrial and breast cancer. Ann.Med. 27: 79–85.Google Scholar
  41. 41.
    F. V. Price, S. K. Chambers, J. T. Chambers, M. L. Carcangiu, P. E. Schwartz, E. I. Kohorn, E. R. Stanley, and B. M. Kacinski (1993). Colony-stimulating factor-1 in primary ascites of ovar-ian cancer is a significant predictor of survival. Am.J.Obstet. Gynecol. 168: 520–527.Google Scholar
  42. 42.
    A. Hakala, B. M. Kacinski, E. R. Stanley, E. I. Kohorn, U. Puistola, J. Risteli, L. Risteli, C. Thomas, and A. Kauppila (1995). Macrophage colony-stimulating factor 1, a clinically useful tumor marker in endometrial adenocarcinoma: Com-parison with CA 125 and the aminoterminal propeptide of type III procollagen. Am.J.Obstet.Gynecol. 173: 112–119.Google Scholar
  43. 43.
    S. M. Scholl, C. Pallud, F. Beuvon, K. Hacene, E. R. Stanley, L. R. Rohrschneider, R. Tang, P. Pouillart, and R. Lidereau (1994). Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked in-flammatory cell infiltrates and prognosis. J.Natl.Cancer Inst. 86: 120–126.Google Scholar
  44. 44.
    E. Sapi and B. M. Kacinski (1999). The role of CSF-1 in normal and neoplastic breast physiology. Proc.Soc.Exp.Biol.Med. 220: 1–8.Google Scholar
  45. 45.
    M. G. Maher, E. Sapi, B. Turner, A. Gumbs, P. L. Perrotta, D. Carter, B. M. Kacinski, and B. G. Haffty (1998). Prognostic significance of colony-stimulating factor receptor expression in ipsilateral breast cancer recurrence. Clin.Cancer Res. 4: 1851–1856.Google Scholar
  46. 46.
    R. S. McDermott, L. Deneux, V. Mosseri, J. Vedrenne, K. Clough, A. Fourquet, J. Rodriguez, J. M. Cosset, X. Sastre, P. Beuzeboc, P. Pouillart, and S. M. Scholl (2002). Circulating macrophage colony stimulating factor as a marker of tumour progression. Eur Cytokine Netw. 13: 121–127.Google Scholar
  47. 47.
    E. Sapi, M. B. Flick, S. Rodov, M. Gilmore-Hebert, M. Kelley, S. Rockwell, and B. M. Kacinski (1996). Independent regulation of invasion and anchorage-independent growth by different autophosphorylation sites of the macrophage colony-stimulating factor 1 receptor. Cancer Res. 56: 5704–5712.Google Scholar
  48. 48.
    E. Sapi, M. B. Flick, S. Rodov, and B. M. Kacinski (1998). Ets-2 transdominant mutant abolishes anchorage-independent growth and macrophage colony-stimulating factor-stimulated invasion by BT20 breast carcinoma cells. Cancer Res. 58: 1027–1033.Google Scholar
  49. 49.
    S. J. Langer, D. M. Bortner, M. F. Roussel, C. J. Sherr, and M. C. Ostrowski (1992). Mitogenic signaling by colony-stimulating factor 1 and ras is suppressed by the ets-2 DNA-binding domain and restored by myc overexpression. Mol. Cell.Biol. 12: 5355–5362.Google Scholar
  50. 50.
    A. E. Filderman, A. Bruckner, B. M. Kacinski, N. Deng, and H. G. Remold (1992). Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive car-cinoma cell lines. Cancer Res. 53: 3661–3666.Google Scholar
  51. 51.
    P. M. Kelly, R. S. Davison, E. Bliss, and J. O. McGee (1988). Macrophages in human breast disease: A quantitative im-munohistochemical study. Br.J.Cancer 57: 174–177.Google Scholar
  52. 52.
    R. D. Leek, A. L. Harris, and C. E. Lewis (1994). Cytokine networks in solid human tumors: Regulation of angiogenesis. J.Leukoc.Biol. 56: 423–435.Google Scholar
  53. 53.
    F. Balkwill and A. Mantovani (2001). Inflammation and can-cer: Back to Virchow? Lancet 357: 539–545.Google Scholar
  54. 54.
    A. Mantovani, B. Bottazzi, F. Colotta, S. Sozzani, and L. Ruco (1992). The origin and function of tumor-associated macrophages. Immunol.Today 13: 265–270.Google Scholar
  55. 55.
    I. L. Bonta and S. Ben-Efraim (1993). Involvement of in-flammatory mediators in macrophage antitumor activity. J.Leukoc.Biol. 54: 613–626.Google Scholar
  56. 56.
    R. B. Herberman, H. T. Holden, J. Y. Djeu, T. R. Jerrells, L. Varesio, A. Tagliabue, S. L. White, J. R. Oehler, and J. H. Dean (1979). Macrophages as regulators of immune responses against tumors. Adv.Exp.Med.Biol. 361–379.Google Scholar
  57. 57.
    B. al-Sarireh and O. Eremin (2000). Tumour-associated macrophages (TAMS): Disordered function, immune sup-pression and progressive tumour growth. J.R. Coll.Surg. Edinb. 45: 1–16.Google Scholar
  58. 58.
    R. S. Kerbel (2000). Tumor angiogenesis: Past, present and the near future. Carcinogenesis. 21: 505–515.Google Scholar
  59. 59.
    J. S. Lewis, R. J. Landers, J. C. Underwood, A. L. Harris, and C. E. Lewis (2000). Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J.Pathol. 192: 150–158.Google Scholar
  60. 60.
    M. Lingens (2001). Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch.Pathol.Lab.Med. 125.Google Scholar
  61. 61.
    L. Turner, C. Scotton, R. Negus, and F. Balkwill (1999). Hypoxia inhibits macrophage migration. Eur.J.Immunol. 29: 2280–2287.Google Scholar
  62. 62.
    H. J. Knowles and A. L. Harris (2001). Hypoxia and tumouri-genesis. Breast Cancer Res. 3: 318–322.Google Scholar
  63. 63.
    C. E. Lewis, R. Leek, A. Harris, and J. O. McGee (1995). Cy-tokine regulation of angiogenesis in breast cancer: The role of tumor-associated macrophages. J.Leukoc.Biol. 57: 747–751.Google Scholar
  64. 64.
    R. D. Leek, C. E. Lewis, R. Whitehouse, M. Greenall, J. Clarke, and A. L. Harris (1996). Association of macrophage infiltra-tion with angiogenesis and prognosis in invasive breast carci-noma. Cancer Res. 56: 4625–4629.Google Scholar
  65. 65.
    K. Engels, S. B. Fox, R. M. Whitehouse, K. C. Gatter, and A. L. Harris (1997). Up-regulation of thymidine phosphorylase ex-pression is associated with a discrete pattern of angiogenesis in ductal carcinomas in situ of the breast. J.Pathol. 182: 414–420.Google Scholar
  66. 66.
    C. T. Guy, R. D. Cardiff, and W. J. Muller (1992). Induction of mammary tumors by expression of polyomovirus middle T oncogenes: A transgenic mouse mode of a metastatic dis-ease. Mol.Cell.Biol. 12: 954–961.Google Scholar
  67. 67.
    M. R. Jadus, C. C. Williams, M. D. Avina, M. Ly, S. Kim, Y. Liu, R. Narasaki, C. A. Lowell, and H. T. Wepsic (1998). Macrophages kill T9 glioma tumor cells bearing the membrane isoform of macrophage colony stimulating fac-tor through a phagocytosis-dependent pathway. J.Immunol. 160: 361–368.Google Scholar
  68. 68.
    M. R. Jadus, M. C. Irwin, M. R. Irwin, R. D. Horansky, S. Sekhon, K. A. Pepper, D. B. Kohn, and H. T. Wepsic (1996). Macrophages can recognize and kill tumor cells bearing the membrane isoform of macrophage colony-stimulating factor. Blood 87: 5232–5241.Google Scholar
  69. 69.
    M. R. Graf, M. R. Jadus, J. C. Hiserodt, H. T. Wepsic, and G. A. Granger (1999). Development of systemic immunity to glioblastoma multiforme using tumor cells genetically en-gineered to express the membrane-associated isoform of macrophage colony-stimulating factor. J.Immunol. 163: 5544–5551.Google Scholar
  70. 70.
    C. C. Williams, H. Trinh, T. V. Tran, Q. Dan, R. Sanchez, C. Delgado, Y. Chen, B. Sippel, E. W. Jeffes, H. T. Wepsic, and M. R. Jadus (2001). Membrane macrophage colony-stimulating factor on MADB106 breast cancer cells does not activate cytotoxic macrophages but immunizes rats against breast cancer. Mol.Ther. 3: 216–224.Google Scholar
  71. 71.
    J. E. Ohm and D. P. Carbone (2001). VEGF as a mediator of tumor-associated immunodeficiency. Immunol.Res. 23: 263–272.Google Scholar
  72. 72.
    J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka (2000). Immuno-biology of dendritic cells. Annu.Rev.Immunol. 18: 767–811.Google Scholar
  73. 73.
    B. Almand, J. R. Resser, B. Lindman, S. Nadaf, J. I. Clark, E. D. Kwon, D. P. Carbone, and D. I. Gabrilovich (2000). Clin-ical significance of defective dendritic cell differentiation in cancer. Clin.Cancer Res. 6: 1755–1766.Google Scholar
  74. 74.
    C. Menetrier-Caux, G. Montmain, M. C. Dieu, C. Bain, M. C. Favrot, C. Caux, and J. Y. Blay (1998). Inhibition of the differentiation of dendritic cells from CD34( C ) progenitors by tumor cells: Role of interleukin-6 and macrophage colony-stimulating factor. Blood 92: 4778–4791.Google Scholar
  75. 75.
    C. Menetrier-Caux, M. C. Thomachot, L. Alberti, G. Montmain, and J. Y. Blay (2001). IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res. 61: 3096–3104.Google Scholar
  76. 76.
    P. A. Andreasen, R. Egelund, and H. H. Petersen (2000). The plasminogen activation system in tumor growth, invasion, and metastasis. Cell.Mol.Life Sci. 57: 25–40.Google Scholar
  77. 77.
    J. A. Foekens, H. A. Peters, M. P. Look, H. Portengen, M. Schmitt, M. D. Kramer, N. Brunner, F. Janicke, M. E. Meijer-van Gelder, S. C. Henzen-Logmans, W. L. van Putten, and J. G. Klijn (2000). The urokinase system of plasminogen ac-tivation and prognosis in 2780 breast cancer patients. Cancer Res. 60: 636–643.Google Scholar
  78. 78.
    S. A. Rabbani and A. P. Mazar (2001). The role of the plas-minogen activation system in angiogenesis and metastasis. Surg.Oncol.Clin.N.Am. 10: 393–415.Google Scholar
  79. 79.
    S. Kennedy, M. J. Duffy, C. Duggan, C. Barnes, R. Rafferty, and M. D. Kramer (1998). Semi-quantitation of urokinase plas-minogen activator and its receptor in breast carcinomas by immunocytochemistry. Br.J.Cancer. 77: 1638–1641.Google Scholar
  80. 80.
    R. Hildenbrand, W. Glienke, V. Magdolen, H. Graeff, H. J. Stutte, and M. Schmitt (1998). Urokinase receptor localiza-tion in breast cancer and benign lesions assessed by in situ hy-bridization and immunohistochemistry. Histochem.Cell.Biol. 110: 27–32.Google Scholar
  81. 81.
    R. Hildenbrand, G. Wolf, B. Bohme, U. Bleyl, and A. Steinborn (1999). Urokinase plasminogen activator receptor (CD87) expression of tumor-associated macrophages in ductal car-cinoma in situ, breast cancer, and resident macrophages of normal breast tissue. J.Leukoc.Biol. 66: 40–49.Google Scholar
  82. 82.
    S. B. Fox, M. Taylor, J. Grondahl-Hansen, S. Kakolyris, K. C. Gatter, and A. L. Harris (2001). Plasminogen activa-tor inhibitor-1 as a measure of vascular remodelling in breast cancer. J.Pathol. 195: 236–243.Google Scholar
  83. 83.
    L. F. Fowles, K. J. Stacey, D. Marks, J. A. Hamilton, and D. A. Hume (2000). Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is de-pendent upon the level of cell-surface receptor. Biochem.J. 347(Part 1): 313–320.Google Scholar
  84. 84.
    K. J. Stacey, L. F. Fowles, M. S. Colman, M. C. Ostrowski, and D. A. Hume (1995). Regulation of urokinase-type plas-minogen activator gene transcription by macrophage colony-stimulating factor. Mol.Cell.Biol. 15: 3430–3441.Google Scholar
  85. 85.
    X. H. Pei, Y. Nakanishi, K. Takayama, F. Bai, and N. Hara (1999). Granulocyte, granulocyte-macrophage, and macrophage colony-stimulating factors can stimulate the in-vasive capacity of human lung cancer cells. Br.J.Cancer 79: 40–46.Google Scholar
  86. 86.
    L. D. Yee and L. Liu (2000). The constitutive production of colony stimulating factor 1 by invasive human breast cancer cells. Anticancer Res. 20: 4379–4383.Google Scholar
  87. 87.
    H. Bando and M. Toi (2000). Tumor angiogenesis, macrophages, and cytokines. Adv.Exp.Med.Biol. 476: 267–284.Google Scholar
  88. 88.
    B. Dankbar, T. Padro, R. Leo, B. Feldmann, M. Kropff, R. M. Mesters, H. Serve, W. E. Berdel, and J. Kienast (2000). Vas-cular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma. Blood 95: 2630–2636.Google Scholar
  89. 89.
    C. Frelin, A. Ladoux, and G. D'Angelo (2000). Vascular en-dothelial growth factors and angiogenesis. Ann.Endocrinol. (Paris) 61: 70–74.Google Scholar
  90. 90.
    H. Saji, M. Koike, T. Yamori, S. Saji, M. Seiki, K. Matsushima, and M. Toi (2001). Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92: 1085–1091.Google Scholar
  91. 91.
    D. Toomey, C. Condron, Q. D. Wu, E. Kay, J. Harmey, P. Broe, C. Kelly, and D. Bouchier-Hayes (2001). TGF-beta1 is elevated in breast cancer tissue and regulates nitric oxide production from a number of cellular sources during hypoxia re-oxygenation injury. Br.J.Biomed.Sci. 58: 177–183.Google Scholar
  92. 92.
    L. L. Thomsen and D. W. Miles (1998). Role of nitric oxide in tumour progression: Lessons from human tumours. Cancer Metastasis Rev. 17: 107–118.Google Scholar
  93. 93.
    L. C. Jadeski and P. K. Lala (1999). Nitric oxide synthase inhi-bition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am.J.Pathol. 155: 1381–1390.Google Scholar
  94. 94.
    R. Rajan, R. Vanderslice, S. Kapur, J. Lynch, R. Thompson, and D. Djakiew (1996). Epidermal growth factor (EGF) pro-motes chemomigration of a human prostate tumor cell line, and EGF immunoreactive proteins are present at sites of metastasis in the stroma of lymph nodes and medullary bone. Prostate 28: 1–9.Google Scholar
  95. 95.
    G. D. Roodman (2001). Biology of osteoclast activation in cancer. J.Clin.Oncol. 19: 3562–3571.Google Scholar
  96. 96.
    H. Kodama, M. Nose, S. Niida, and A. Yamasaki (1991). Es-sential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J.Exp. Med. 173: 1291–1294.Google Scholar
  97. 97.
    A. Grey, Y. Chen, I. Paliwal, K. Carlberg, and K. Insogna (2000). Evidence for a functional association between phos-phatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 141: 2129–2138.Google Scholar
  98. 98.
    N. C. Hunt, Y. Fujikawa, A. Sabokbar, I. Itonaga, A. Harris, and N. A. Athanasou (2001). Cellular mechanisms of bone resorption in breast carcinoma. Br.J.Cancer 85: 78–84.Google Scholar
  99. 99.
    J. M. Quinn, J. O. McGee, and N. A. Athanasou (1998). Human tumour-associated macrophages differentiate into osteoclas-tic bone-resorbing cells. J.Pathol. 184: 31–36.Google Scholar
  100. 100.
    A. T. Mancino, V. S. Klimberg, M. Yamamoto, S. C. Manolagas, and E. Abe (2001). Breast cancer increases osteoclastogene-sis by secreting M-CSF and upregulating RANKL in stromal cells. J.Surg.Res. 100: 18–24.Google Scholar
  101. 101.
    J. W. Pollard and L. Henninghausen (1994). Colony stim-ulating factor-1 is required for mammary gland develop-ment during pregnancy. Proc.Natl.Acad.Sci.U.S.A. 91: 9312–9316.Google Scholar
  102. 102.
    P. E. Cohen, L. Zhu, and J. W. Pollard (1997). The absence of CSF-1 in osteopetrotic (csfm op /csfm op) mice disrupts estrous cycles and ovulation. Biol.Reprod. 56: 110–118.Google Scholar
  103. 103.
    A. V. Nguyen and J. W. Pollard (2002). Colony stimulating factor-1 is required to recruit macrophages into the mam-mary gland to facilitate mammaryductal outgrowth. Dev.Biol. 247: 11–25.Google Scholar
  104. 104.
    R. C. Humphreys, M. Krajewska, S. Krnacik, R. Jaeger, H. Weiher, S. Krajewski, J. C. Reed, and J. M. Rosen (1996). Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development 122: 4013–4022.Google Scholar
  105. 105.
    L. M. Coussens, C. L. Tinkle, D. Hanahan, and Z. Werb (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490.Google Scholar
  106. 106.
    L. M. Coussens and Z. Werb (2001). Inflammatory cells and cancer: Think different! J.Exp.Med. 193: F23–26.Google Scholar
  107. 107.
    H. Kuper, H. O. Adami, and D. Trichopoulos (2000). Infections as a major preventable cause of human cancer. J.Intern.Med. 248: 171–183.Google Scholar
  108. 108.
    L. A. Garcia Rodriguez and Huerta-Alvarez, C. (2001). Re-duced risk of colorectal cancer among long-term users of as-pirin and nonaspirin nonsteroidal anti-inflammatory drugs. Epidemiology 12: 88–93.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Elaine Y. Lin
    • 1
  • Valerie Gouon-Evans
    • 1
  • Andrew V. Nguyen
    • 1
  • Jeffrey W. Pollard
    • 1
  1. 1.Center for Study of Reproductive Biology and Women's Health, and the Departments of Developmental and Molecular Biology and Obstetrics and Gynecology and Women's HealthAlbert College of MedicineNew York

Personalised recommendations