Journal of Paleolimnology

, Volume 28, Issue 1, pp 95–109 | Cite as

The paleolimnological analysis of sediments from high mountain lake Nižné Terianske pleso in the High Tatras (Slovakia)

  • F. Šporka
  • E. Štefková
  • P. Bitušík
  • A.R. Thompson
  • A. Agustí-Panareda
  • P.G. Appleby
  • J.A. Grytnes
  • C. Kamenik
  • I. Krno
  • A. Lami
  • N. Rose
  • N.E. Shilland
Article

Abstract

Sedimentological climate proxies and a 200-year long climate record, reconstructed using a data-set of European-wide meteorological data, have been compared at the high mountain lake Nižné Terianske pleso in the High Tatras, Slovakia. Diatoms, chrysophyte stomatocysts, chironomids, plant pigments and spheroidal carbonaceous particles (SCPs) were analysed as well as sediment lithostratigraphic parameters. Using a radiometric approach the sediment core was dated and a depth of 4.6 cm was found to correspond to 1852 AD. The sediment accumulation rate (0.0034 g·cm−2·yr−1) was one of the lowest identified in the European mountain lake project, MOLAR. Despite this slow accumulation rate a remarkably coherent lithological and stratigraphic record has been recovered. The sediments of this remote mountain site, largely free from the effects of direct human impact, have been found to display a wealth of variability over the last 200 years.

The record of spheroidal carbonaceous particles, indicators of anthropogenic pollution deposition, begins around 4.5–5.0 cm in depth (1833–1857). Temporal patterns are typical of European lake sites with the concentration peaking in the late 1970's. The SCP/210Pb inventory ratio for the site is also in good agreement with the European latitudinal pattern. A strong influence of sample age on the chrysophyte assemblage composition in the upper-most 4–6 cm indicates that the main changes in the cysts have been related to long term environmental changes, probably pH. Analysis of chironomid remains revealed a stable profundal community. Chironomids as a whole showed no correlations to temperature fluctuations in the last 200 years. Relatively abundant remains of Diamesa sp. head capsules and other taxa closely associated with stream conditions in the older layers contrast with the absence of Diamesa sp. in the recent sediments. This change is considered to be evidence for the existence of a stronger, more stable inlet supplied from permanent granular snow fields in the lake basin. The most important changes in diatom assemblages were observed at 3cm. Many species of the genus Achnanthes spp. together with Navicula schmassmannii and Orthoseira roeseana made up the greatest part of the diatom community above 3 cm, being absent or rare lower in the record. A positive correlation between diatoms and mean summer temperature was found.

High Tatra Mountains high mountain lake lake sediments diatoms chrysophyte stomatocysts chironomids carbonaceous particles plant pigments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbeti, M. D. & J. P. Smol, 1995. Chrysophyte population and encystment patterns in two Canadian lakes. J. Phycol. 31: 70-78.Google Scholar
  2. Agustí-Panareda, A. & R. Thompson, 2002. Reconstructing air temperature at eleven remote alpine and arctic lakes in Europe from 1781 to 1997 AD J. Paleolim. 28: 7-23.Google Scholar
  3. Appleby, P. G., 1993. Forward to the 210Pb dating anniversary series. J. Paleolim. 9: 155-160.Google Scholar
  4. Appleby, P. G., 1998. Dating recent sediments by 210Pb: Problems and solutions. Proc. 2nd NKS/EKO-1 Seminar, Helsinki, 2-4 April 1997.Google Scholar
  5. Appleby, P. G., 2000. Radiometric dating of sediment records in European mountain lakes. J. Limnol. 59(suppl. 1): 1-14.Google Scholar
  6. Appleby, P. G., P. J. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210dating by low backgroud gamma counting. Hydrobiologia 141: 21-27.Google Scholar
  7. Appleby, P. G. & F. Oldfield, 1978a. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1-8.Google Scholar
  8. Appleby, P. G. & F. Oldfield, 1978b. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29-35.Google Scholar
  9. Appleby, P. G. & F. Oldfield, 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29-35.Google Scholar
  10. Appleby, P. G., N. Richardson & P. J. Nolan, 1991. 241Am dating of lake sediments. Hydrobiologia 214: 35-42.Google Scholar
  11. Appleby, P. G., N. Richardson & P. J. Nolan, 1992. Self-absorption corrections for well-type germanium detectors. Nucl. Inst. Meth. B 71: 228-233.Google Scholar
  12. Barber K. E., R. W. Battarbee, S. J. Brooks, G. Eglington, E. Y. Haworth, F. Oldfield, A. C. Stevenson, R. Thompson, P. G. Appleby, W. E. N. Austin, N. G. Cameron, K. J. Ficken, P. Golding, D. D. Harkness, J. A. Holmes, R. Hutchinson, J. P. Lishman, D. Maddy, L. C. V. Pinder, N. L. Rose & R. E. Stoneman, 1999. Proxy records of climate change in the UK over the last two millennia: documented change and sedimentary records from lakes and bogs. J. Geol. Sci. Lond. 156: 369-380.Google Scholar
  13. Battarbee, R. W., 1986. Diatom analysis. In: Berglund, B. E. (ed.)., Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, 527-570.Google Scholar
  14. Battarbee, R. W., 2000. Paleolimnological approaches to climate change, with special regard to the biological record. Quat. Sci. Rev. 19: 107-124.Google Scholar
  15. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184-188.Google Scholar
  16. Battarbee, R. W., J.-A. Grytnes, R. Thompson, P. G. Appleby, J. Catalan, A. Korhola, H. J. B. Birks, E. Heegaard & A. Lami, (2002). Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J. Paleolim. 28: 161-179.Google Scholar
  17. Bitušík, P. & V. Kubovčík, 1999. Sub-fossil chironomids (Diptera: Chironomidae) from the sediments of the Ni·né Terianske pleso (High Tatra Mts., Slovakia). Dipterologica bohemoslovaca 9: 11-20.Google Scholar
  18. Brooks, S. J., 1997: The response of Chironomidae (Insecta: Diptera) assemblages to late-glacial climatic change in Kråkenes lake, Western Norway. Quart. Proc. 5: 49-58.Google Scholar
  19. Brundin, L., 1956: Die bodenfaunistischen Seetypen und ihre Anwendbarkeit auf die Südhalbkugel. Report Institute Freshwater research, Drottningholm, 37: 186-235.Google Scholar
  20. Catalan, J., S. Pla, M. Rieradevall, M. Felip, M. Ventura, T. Buchaca, L. Camarero, A. Brancelj, P. G. Appleby, A. Lami, J. A. Grytnes, A. Agustí-Panareda & R. Thompson, 2002. Lake Redó ecosystem response to an increasing warming in the Pyrenees during the twentieth century. J. Paleolim. 28: 129-145.Google Scholar
  21. Cleveland, W. S., E. Grosse & W. M. Shyu, 1993. Local regression models. In Chambers, J. M. & T. J. Hastie (eds), Statistical Models in S Chapman & Hall, London, 309-376.Google Scholar
  22. Duff, K. A., B. A. Zeeb & J. P. Smol, 1995. Atlas of Chrysophycean Cysts. Kluwer Academic Publishers, Dordrecht.Google Scholar
  23. Facher, E. & R. Schmidt, 1996. A silicious chrysophycean cyst-based pH transfer function for Central European lakes. J. Paleolim. 16: 275-321.Google Scholar
  24. Fritz, S. C., 1996. Paleolimnological records of climatic change in North America. Limnol. Oceanogr. 41: 882-889.Google Scholar
  25. Glew, J. R., 1989. A new trigger mechanism for sediments samplers. J. Paleolim. 2: 241-243.Google Scholar
  26. Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103: 103-106.Google Scholar
  27. Kamenik, C., R. Schmidt, K. Koinig, A. Agustí-Panareda, R. Thompson & R. Psenner, 2002. The Chrysophyte stomatocyst composition in a high alpine lake (Gossenköllesee, Tyrol) in relation to seasonality, temperature and land-use. Beih. Nova Hedwigia (in press).Google Scholar
  28. Kowalyk, H. E., 1985: The larval cephalic setae in the Tanypodinae (Diptera: Chironomidae) and their importance in generic determinations. Can. Entomol. 117: 67-106.Google Scholar
  29. Krno, I., 1991. Macrozoobenthos of the Tatra lakes littoral (The High Tatras) and its effection by acidification. Biologia (Bratislava) 46: 495-508.Google Scholar
  30. Lami, A., F. Niessen, P. Guilizzoni, J. Masaferro & C. A. Belis, 1994. Palaeolimnological studies of the eutrophication of volcanic Lake Albano (central Italy). J. Paleolim. 10: 181-197.Google Scholar
  31. Lami, A., P. Guilizzoni, A. Marchetto, 2000. High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European alpine lakes: the MOLAR project. J. Limnol. 59(suppl. 1): 15-28.Google Scholar
  32. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395-420.Google Scholar
  33. Rose, N. L., 1994. A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments. J. Paleolim. 11: 201-204.Google Scholar
  34. Rose, N. L., S. Harlock, P. G. Appleby & R. W. Battarbee, 1995. The dating of recent lake sediments in the United Kingdom and Ireland using spheroidal carbonaceous particle concentration profiles. Holocene 5: 328-335.Google Scholar
  35. Rose, N. L., S. Harlock & P. G. Appleby, 1999. The spatial and temporal distributions of spheroidal carbonaceous fly-ash particles (SCP) in the sediment records of European mountain lakes. Water, Air Soil Pollut. 113: 1-32.Google Scholar
  36. Sæther, O. A., 1975. Nearctic chironomids as indicators of lake typology. Verh. Int. Ver. Limnol. 19: 3127-3133.Google Scholar
  37. Smoleň, F. & M. Ostrožlík, 1991. Biometeorological cooling at high Mountain positions under various meteorological conditions. In Mountainous Meteorology, Climatology and Aerology of the Lower Layers of Troposhere., Bratislava, SHMI, 159-165Google Scholar
  38. Stuchlík, E., Z. Stuchlíková, J. Fott, L. Růžicka & J. Vrba, 1985. Effects of acid precipitations on waters of the TANAP territory. Zborník TANAPu, 28: 173-211.Google Scholar
  39. Wathne, B. M. & B. O. Rosseland (eds), 2000. MOLAR-Measuring and modelling the ynamics response of remote mountain lake ecosystems to environmental change: a program of Mountain Lake Research-MOLAR. Final Report 4/1999. Norwegian Institute for Water Research (NIVA), 201 pp.Google Scholar
  40. Wiederholm. T. (ed.), 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Ent. Scand. Suppl. 19: 1-457.Google Scholar
  41. Züllig, H., 1985. Pigmente phototropher Bakterien in Seesedimenten und ihre Bedeuntung für die Seenforschung. Schweiz. Z. Hydrol. 47: 87-126.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • F. Šporka
    • 1
  • E. Štefková
    • 1
  • P. Bitušík
    • 2
  • A.R. Thompson
    • 3
  • A. Agustí-Panareda
    • 3
  • P.G. Appleby
    • 4
  • J.A. Grytnes
    • 5
  • C. Kamenik
    • 6
  • I. Krno
    • 7
  • A. Lami
    • 8
  • N. Rose
    • 9
  • N.E. Shilland
    • 9
  1. 1.Department of Hydrobiology, Institute of ZoologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Biology, Faculty of Ecology and Environmental SciencesTechnical University in ZvolenBanská ŠtiavnicaSlovakia
  3. 3.Department of Geology and GeophysicsUniversity of EdinburghEdinburghUK
  4. 4.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
  5. 5.Botanical InstituteUniversity of BergenBergenNorway
  6. 6.Institute of LimnologyAustrian Academy of SciencesMondseeAustria
  7. 7.Department of Hydrobiology, Faculty of Natural Sciences ofComenius UniversityBratislavaSlovakia
  8. 8.Italiano di IdrobiologiaCNR-IstitutoVerbania-PallanzaItaly
  9. 9.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations