International Journal of Primatology

, Volume 19, Issue 6, pp 971–998

Dietary Response of Chimpanzees and Cercopithecines to Seasonal Variation in Fruit Abundance. II. Macronutrients

  • Nancy Lou Conklin-Brittain
  • Richard W. Wrangham
  • Kevin D. Hunt
Article

Abstract

In a continuation of our study of dietary differentiation among frugivorous primates with simple stomachs, we present the first comparison of differences in dietary macronutrient content between chimpanzees and cercopithecine monkeys. Previously we have shown that chimpanzee and monkey diets differ markedly in plant part and species content. We now examine whether this diet diversity is reflected in markedly different dietary macronutrient levels or the different feeding strategies yield the same macronutrient levels in their diets. For each primate group we calculated the total weighted mean dietary content of 4 macronutrients: crude lipid (lipid), crude protein (CP), water-soluble carbohydrates (WSC), and total nonstructural carbohydrates (TNC). We also calculated 4 fiber fractions: neutral-detergent fiber (NDF), which includes the subfractions hemicellulose (HC), cellulose (Cs), and sulfuric acid lignin (Ls). The HC and Cs are potentially fermentable fibers and would contribute to the energy provided by plant food, depending on the hind gut fermenting capacity of the individual primate species. The chimpanzee diet contained higher levels of WSC and TNC because during times of fruit abundance the chimpanzees took special advantage of ripe fruit, while the monkeys did not. The monkey diets contained higher levels of CP because the monkeys consumed a constant amount of leaf throughout the year. All four primate species consumed diets with similar NDF levels. However, the chimpanzees also took advantage of periods of ripe fruit abundance to decrease their Ls levels and to increase their HC levels. Conversely, the monkey diets maintained constant levels of the different fiber fractions thoughout the year. Nevertheless, despite these differences, the diets of the 4 frugivores were surprisingly similar, considering the substantial differences in body size. We conclude that the chimpanzee diet is of higher quality, particularly of lower fiber content, than expected on the basis of their body size.

diet ape monkey protein lipid fiber sugar seasonality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. AOAC (1984). Official Methods of Analysis of the Association of Official Analytical Chemists. Williams, S. (ed.) Association of Official Analytical Chemists, Arlington, VA.Google Scholar
  2. Baranga, D. (1982). Nutrient composition and food preferences of colobus monkeys in Kibale Forest, Uganda. Afr. J. Ecol. 20: 113–121.Google Scholar
  3. Baranga, D. (1983). Changes in chemical composition of food parts in the diet of colobus monkeys. Ecology 64: 668–673.Google Scholar
  4. Beeson, M. (1989). Seasonal dietary stress in a forest monkey (Cercopithecus mitis). Oecologia 78: 565–570Google Scholar
  5. Boag, P. T., and Grant, P. R. (1981). Intense natural selection in a population of Darwin's Finches (Geospizinae) in the Galápagos. Science 214: 82–85.Google Scholar
  6. Bruorton, M., and Perrin, M. R. (1988). The anatomy of the stomach and cecum of the samango monkey (Cercopithecus mitis erythrarchus Peters, 1852). Z. Saeugetierkd. 53: 210–224.Google Scholar
  7. Calvert, J. (1985). Food selection by by western gorillas (G. g. gorilla) in relation to food chemistry. Oecologia 65: 236–246.Google Scholar
  8. Case, T. J. (1978). On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53: 243–282.Google Scholar
  9. Conklin, N. L., and Wrangham, R. W. (1994). The value of figs to a hind-gut fermenting frugivore: A nutritional analysis. Biochem. Syst. Ecol. 22: 137–151.Google Scholar
  10. Conklin-Brittain, N. L., Wrangham, R. W., and Hunt, K. D. (1997). Frugivorous primate diets in Kibale Forest, Uganda. Proc. Nutr. Soc. 56: 322A.Google Scholar
  11. Cords, M. (1986). Interspecific and intraspecific variation in diet of two forest guenons, Cercopithecus ascanius and C. mitis. J. Anim. Ecol. 55: 811–827.Google Scholar
  12. Cork, S. (1994). Digestive constraints on dietary scope in small and moderately-small mammals: how much do we really understand? In Chivers, D. J., and Langer, P. (eds.), The Digestive System in Mammals: Food, Form and Function, Cambridge University Press, Cambridge, pp. 337–369.Google Scholar
  13. Cork, S. J., and Foley, W. J. (1991). Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defenses in temperate and tropical forests. In Palo, R. T., and Robbins, C. T. (eds.), Plant Defenses Against Mammalian Herbivory, CRC Press, Boca Raton, FL, pp. 133–166.Google Scholar
  14. Davies, A. G., Bennett, E. L., and Waterman, P. G. (1988). Food selection by two south-east Asian colobine monkeys (Presbytis rubicunda and Presbytis melalophos) in relation to plant chemistry. Biol. J. Linn. Soc. 34: 33–56.Google Scholar
  15. Demment, M. W., and van Soest, P. J. (1985). A nutritional explanation for body size patterns of ruminant and nonruminant herbivores. Am. Nat. 125: 641–672.Google Scholar
  16. Estrada, A., and Coates-Estrada, R. (1985). A preliminary study of resource overlap between howling monkeys (Alouatta palliata) and other arboreal mammals in the tropical rain forest of Los Tuxtlas, Mexico. Am. J. Primatol. 9: 27–37.Google Scholar
  17. Foley, W. J., and McArthur, C. (1994). The effects and costs of allelochemicals for mammalian herbivores: An ecological perspective. In Chivers, D. J., and Langer, P. (eds.), The Digestive System in Mammals: Food, Form and Function, Cambridge University Press, Cambridge, pp. 370–391.Google Scholar
  18. Ganzhorn, J. U., Abraham, J. P., and Rakotomalala, M. R. (1985). Some aspects of the natural history and food selection of Avahi laniger. Primates 26: 452–463.Google Scholar
  19. Gartlan, J. S., McKey, D. B., and Waterman, P. G. (1978). Soils, forest structure and feeding behavior of primates in a Cameroon coastal rain-forest. In Chivers, D. J., and Herbert, J. (eds.) Recent Advances in Primatology, Academic Press, New York. pp. 259–267.Google Scholar
  20. Gartlan, J. S., McKey, D. B., Waterman, P. G., Mbi, C. N., and Struhsaker, T. T. (1980). A comparative study of the phytochemistry of two African rain forests. Biochem. Syst. Ecol. 8: 410–422.Google Scholar
  21. Glander, K. (1981). Feeding patterns in mantled howling monkeys. In Kamil, A. C. and Sargent, T. D. (eds.), Foraging Behavior: Ecological, Ethnological and Psychological Approaches, Garland Press, New York, pp. 231–257.Google Scholar
  22. Hamilton, R. A., and Galdikas, B. M. F. (1994). A preliminary study of food selection by the orangutan in relation to plant quality. Primates 35: 255–263.Google Scholar
  23. Hill, D. A. and Lucas, P. W. (1996). Toughness and fiber content of major leaf foods of Japanese macaques (Macaca fuscata yakui) in Yakushima. Am. J. Primatol. 38: 221–231.Google Scholar
  24. Hladik, C. (1977a). A comparative study of the feeding strategies of two sympatric species of leaf monkeys: Presbytis senex and P. entellus. In Clutton-Brock, T. H. (ed.), Primate Ecology, Academic Press, London, pp. 324–353.Google Scholar
  25. Hladik, C. M. (1977b). Chimpanzees of Gabon and chimpanzees of Gombe: some comparative data on the diet. In Clutton-Brock, T. H. (ed.), Primate Ecology, Academic Press, London, pp. 481–503.Google Scholar
  26. Hladik, C. M., Hladik, A., Bousset, J., Valdebouze, P., Viroben, G., Delort-Laval, J. (1971). Le regime alimentaire de primates de l'île de Barro-Colorado (Panama). Terre Vie 1: 25–117.Google Scholar
  27. Kar-Gupta, K., and Kumar, A. (1994). Leaf chemistry and food selection by common langurs (Presbytis entellus) in Rajaji National Park, Uttar Pradesh, India. Int. J. Primatol. 15: 75–93.Google Scholar
  28. Keys, J. E., and van Soest, P. J. (1970). Digestibility of forages by the meadow vole (Microtus pennsylvanicus). J. Dairy Sci. 53: 1502–1508.Google Scholar
  29. Keys, J., van Soest, P. J., and Young, E. P. (1970). Effect of increasing dietary cell wall content on the digestibility of hemicellulose and cellulose in swine and rats. J. Anim. Sci. 31: 1172–1177.Google Scholar
  30. Kingsbury, J. (1978). Ecology of poisoning. In Keeler, R. F., van Kampen, K. R., and James, L. F. (eds.), Effects of Poisonous Plants on Livestock, Academic Press, New York, pp. 81–91.Google Scholar
  31. Kool, K. (1992). Food selection by the silver leaf monkey, Trachypithecus auratus sondaicus, in relation to plant chemistry. Oecologia 90: 527–533.Google Scholar
  32. Kurland, J. A., and Gaulin, S. J. C. (1987). Comparability among measures of primate diets. Primates. 28: 71–77.Google Scholar
  33. Leighton, M. (1993). Modeling dietary selectivity by Bornean orangutans: Evidence for integration of multiple criteria in fruit selection. Int. J. Primatol. 14: 257–313.Google Scholar
  34. Maisels, F. (1993). Gut passage rate in guenons and mangabeys: another indicator of a flexible feeding niche? Folia Primatol. 61: 35–37.Google Scholar
  35. Malenky, R. K., and Stiles, E. W. (1991). Distribution of terrestrial herbaceous vegetation and its consumption by Pan paniscus in the Lomako Forest, Zaire. Am. J. Primatol. 23: 153–169.Google Scholar
  36. Mandel, H. G. (1971). Pathways of drug biotransformation: Biochemical conjugations. In LaDu, B. N., Mandel, H. G., and Way, E. L. (eds), Fundamentals of Drug Disposition, Williams & Wilkins, Baltimore, p. 149.Google Scholar
  37. Marks, D. L., Swain, T., Goldstein, S., Richard, A., and Leighton, M. (1988). Chemical correlates of rhesus monkey food choices: The influence of hydrolyzable tannins. J. Chem. Ecol. 14: 213–235.Google Scholar
  38. McKey, D. B., Gartlan, J. S., Waterman, P. G., and Choo, G. M. (1981). Food selection by black colobus monkeys (Colobus satanas) in relation to plant chemistry. Biol. J. Linn. Soc. 16: 115–146.Google Scholar
  39. Milton, K. (1979). Factors influencing leaf choice by howler monkeys: A test of some hypotheses of food selection by generalist herbivores. Am. Nat. 144: 362–378.Google Scholar
  40. Milton, K. (1981). Food choice and digestive strategies of two sympatric primate species. Am. Nat. 117: 496–505.Google Scholar
  41. Milton, K. and Demment, M. W. (1988). Chimpanzees fed high and low fiber diets and comparison with human data. J. Nutr. 118: 1082–1088.Google Scholar
  42. Milton, K., van Soest, P. J., and Robertson, J. B. (1980). Digestive efficiencies of wild howler monkeys. Physiol. Zool. 53: 402–409.Google Scholar
  43. Mowry, C. B., Decker, B. S., and Shure, D. J. (1996). The role of phytochemistry in dietary choices of Tana River red colobus monkeys (Procolobus bacius rufomitratus). Int. J. Primatol. 17: 63–84.Google Scholar
  44. Nash, L. T., and Whitten, P. L. (1989). Preliminary obaservations on the role of Acacia gum chemistry in Acacia utilization by Galago senegalensis in Kenya. Am. J. Primatol. 17: 27–39.Google Scholar
  45. Oates, J. F. (1977). The Guereza and its food. In Clutton-Brock, T. H. (ed). Primate Ecology, Academic Press, London, pp. 275–321.Google Scholar
  46. Oates, J. F., Waterman, P. G., and Choo, G. M. (1980). Food selection by the South Indian leaf-monkey, Presbytis johnii, in relation to leaf chemistry. Oecologia 45: 45–56.Google Scholar
  47. Oftedal, O. T. (1991). The nutritional consequences of foraging in primates: The relationship of nutrient intakes to nutrient requirements. Phil. Trans. R. Soc. Lond. B 334: 161–170.Google Scholar
  48. Parra, R. (1979). Comparison of foregut and hindgut fermentation in herbivores. In Montgomery, G. G. (ed.), The Ecology of Arboreal Folivores, Smithsonian Institute Press, Washington, DC, pp. 205–229.Google Scholar
  49. Popovich, D. G., Jenkins, D. J. A., Kendall, C. W. C., Dierenfeld, E. S., Carroll, R. W., Tariq, N., and Vidgen, E. (1997). The western lowland gorilla diet has implications for the health of humans and other hominids. J. Nutr. 127: 2000–2005.Google Scholar
  50. RDA (1980). Recommended Dietary Allowances, 9th ed., National Academy of Science, Washington, DC.Google Scholar
  51. Robinson, B. W., and Wilson, D. S. (1998). Optimal foraging, specialization, and a solution to Liem's paradox. Am. Nat. 151: 223–235.Google Scholar
  52. Rogers, M. E., Maisels, F., Williamson, E. A., Fernandez, M., and Tutin, C. E. G. (1990). Gorilla diet in the Lopé Reserve, Gabon: A nutritional analysis. Oecologia 84: 326–339.Google Scholar
  53. Rudran, R. (1979). Intergroup dietary comparisons and folivorous tendencies of two groups of blue monkeys (Cercopithecus mitis Stuhlmann). In Montgomery, G. G. (ed), Ecology of Arboreal Folivores, Smithsonian Institute Press, Washington, DC, pp. 483–503.Google Scholar
  54. Sakaguchi, E., Suzuki, K., Kotera, S., and Ehara, A. (1991). Fibre digestion and digesta retention time in macaque and colobus monkeys. In Ehara, A., Kimura, T., Takenaka, O., and Iwamoto, M. (eds.), Primatology Today: Proceedings of the 13th Congress of the International Primatological Society, Elsevier, England, pp. 671–674.Google Scholar
  55. Simmen, B., and Sabatier, D. (1996). Diets of some French Guianan primates: Food composition and food choices. Int. J. Primatol. 17: 661–693.Google Scholar
  56. Smith, R. J., and Jungers, W. L. (1997). Body mass in comparative primatology. J. Hum. Evol. 32: 523–559.Google Scholar
  57. Sterling, E. J., Dierenfeld, E. S., Ashbourne, C. J., and Feistner, A. T. C. (1994). Dietary intake, food composition and nutrient intake in wild and captive populations of Daubentonia madagascariensis. Folia Primatol. 62: 115–124.Google Scholar
  58. Temerin, L. A., and Cant, J. G. H. (1984). The evolutionary divergence of old world monkeys and apes. Am. Nat. 122: 335–351.Google Scholar
  59. van Soest, P. J. (1994). The Nutritional Ecology of the Ruminant, Cornell University Press, Ithaca, NY.Google Scholar
  60. Watkins, B. E., Ullrey, D. E., and Whetter, P. A. (1985). Digestibility of a high-fiber biscuit-based diet by black and white colobus (Colobus guereza). Am. J. Primatol. 9: 137–144.Google Scholar
  61. Williams, R. T. (1959). Detoxication Mechanisms: The Metabolism and Detoxication of Drugs, Toxic Substances and Other Organic Compounds, John Wiley & Sons, New York.Google Scholar
  62. Wrangham, R. W., Conklin, N. L., Chapman, C. A., and Hunt, K. D. (1991). The significance of fibrous foods for Kibale Forest chimpanzees. Phil. Trans. R. Soc. Lond. B 334: 171–178.Google Scholar
  63. Wrangham, R. W., Conklin, N. L., Etot, G., Obua, J., Hunt, K. D., Hauser, M. D., and Clark, A. P. (1993). The value of figs to chimpanzees. Int. J. Primatol. 14: 243–256.Google Scholar
  64. Wrangham, R. W., Conklin-Brittain, N. L., and Hunt, K. D. (1998). Dietary response of Chimpanzees and Cercopithecines to seasonal variation in fruit abundance: I. Antifeedants. Int. J. Primatol. 19: 949–970.Google Scholar
  65. Yeager, C. P., Silver, S. C., and Dierenfeld, E. S. (1997). Mineral and phytochemical influences on foliage selection by the proboscis monkey (Nasalis larvatus). Am. J. Primatol. 41: 117–128.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Nancy Lou Conklin-Brittain
    • 1
  • Richard W. Wrangham
    • 1
  • Kevin D. Hunt
    • 2
  1. 1.Department of Anthropology, Peabody MuseumHarvard UniversityCambridge
  2. 2.Department of AnthropologyIndiana UniversityBloomington

Personalised recommendations