Advertisement

Heat and Mass Flux Effects on a Moving Vertical Cylinder with Chemically Reactive Species Diffusion

  • P. Ganesan
  • P. Loganathan
Article

Abstract

This paper presents the development of the free convection boundary layer flow of a viscous and incompressible fluid past an impulsively started semi-infinite vertical cylinder with uniform heat and mass fluxes and chemically reactive species. The governing coupled nonlinear partial differential equations have been solved numerically using the finite-difference scheme of Crank–Nicolson type. Graphical results for the velocity, temperature, concentration, local and average skin friction, Nusselt number and Sherwood number profiles are illustrated and discussed for various physical parametric values. It is noted that due to the presence of first-order chemical reaction the velocity decreases with increasing values of the chemical reaction parameter

Keywords

Nusselt Number Mass Flux Free Convection Incompressible Fluid Convection Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    U. N. Das, R. Deka, and V. M. Soundalgekar, Eng. Res., 60, 284–290 (1994).Google Scholar
  2. 2.
    K.T. Yang, J. Appl. Mech., 27, 230–236 (1960).Google Scholar
  3. 3.
    G. A. Bottemanne, Appl. Sci. Res., 25, 372–382 (1972).Google Scholar
  4. 4.
    T. S. Chen and C. F. Yuh, Int. J. Heat Mass Transfer, 23, 451–461 (1980).Google Scholar
  5. 5.
    J. J. Heckel, T. S. Chen, and B. F. Armaly, Trans. ASME, C, 111, 1108–1111 (1989).Google Scholar
  6. 6.
    J. L. S. Chen, Trans. ASME, C, 105, 403–406 (1983).Google Scholar
  7. 7.
    I. Pop, M. Kumari, and G. Nath, Int. J. Engng. Sci., 28, 303–312 (1990).Google Scholar
  8. 8.
    D. B. Ingham, Int. J. Heat Mass Transfer, 27, 1837–1843 (1984).Google Scholar
  9. 9.
    Y. Joshi and B. Gebhart, Int. J. Heat Mass Transfer, 31, 743–757 (1998).Google Scholar
  10. 10.
    S. D. Harris, D. B. Ingham, and I. Pop, Trans. J. Porous Media, 26, 207–226 (1997).Google Scholar
  11. 11.
    S. D. Harris, D. B. Ingham, and I. Pop, Fluid Dyn. Res., 18, 313–324 (1996).Google Scholar
  12. 12.
    H. R. Nagendra, M. A. Tirunarayanan, and A. Ramachandran, Trans. ASME, C, 92, 191–194 (1970).Google Scholar
  13. 13.
    P. L. Chambre and J. D. Young, Phys. Fluids, 1, 48–51 (1958).Google Scholar
  14. 14.
    H. S. Takher, A. J. Chamkha, and G. Nath, Heat Mass Transfer, 36, 237–246 (2000).Google Scholar
  15. 15.
    P. Ganesan and P. Loganathan, Heat Mass Transfer, 37, No. 1, 59–65 (2001).Google Scholar
  16. 16.
    B. Carnahan, H. A. Luther, and J. O. Wilkes, in: Applied Numerical Methods, John Wiley and Sons, New York (1969), p. 44.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • P. Ganesan
    • 1
  • P. Loganathan
  1. 1.School of MathematicsAnna UniversityChennaiIndia

Personalised recommendations