Phenomenology and the Cognitive Sciences

, Volume 1, Issue 2, pp 169–180 | Cite as

Neuronal dynamics and conscious experience: an example of reciprocal causation before epileptic seizures

  • Michel Le Van Quyen
  • Claire Petitmengin


Neurophenomenology (Varela 1996) is not only philosophical but also empirical and experimental. Our purpose in this article is to illustrate concretely the efficiency of this approach in the field of neuroscience and, more precisely here, in epileptology. A number of recent observations have indicated that epileptic seizures do not arise suddenly simply as the effect of random fluctuations of brain activity, but require a process of ‘pre-seizure’ changes that start long before. This has been reported at two different levels of description: on the one hand, the epileptic patient often experiences some warning symptoms that precede seizures from several minutes to hours in the form of very specific lived events. On the other hand, the analyses of brain electrical activities have provided strong evidence that it is possible to detect a pre-seizure state in the neuronal dynamics several minutes before the electro-clinical onset of a seizure. We review here some of the ongoing work of our research group concerning seizure anticipation. In particular, we discuss experimental evidence of ‘upward’ (local-to-global) formation of conscious experience and its neural substrate, but also of the “downward” (global-to-local) determination of local neuronal activity by situated conscious activity and its substrate large-scale neural assemblies. This causal role of conscious experience may lead to new kinds of therapy for epileptic patients.


Brain Activity Neuronal Activity Electrical Activity Causal Role Recent Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarbanel, H. and Rabinovich, M. I. 2001. Neurodynamics: nonlinear dynamics and neurobiology. Current Opinion in Neurobiology 11: 423-430.Google Scholar
  2. Babloyantz, A. and Destexhe, A. 1986. Low dimensional chaos in an instance of epilepsy. Proceedings of the National Academy of Sciences USA 83: 3513-3517.Google Scholar
  3. Birbaumer, N., Elbert, T., Canavan, A., and Rockstroh, B. 1990. Slow potentials of the cerebral cortex and behavior. Physiological Review 70: 1-41.Google Scholar
  4. Efron, R. 1957. The conditioned inhibition of uncinate fits. Brain 80: 251-261.Google Scholar
  5. Elbert, T., Ray, W. J., Kowalik, A. J., Skinner, J. E., Graf, K. E., and Birbaumer, N. 1994. Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiological Review 74: 1-47.Google Scholar
  6. Engel, J. 1989. Seizure and Epilepsy. Contemporary Neurology Series. Philadelphia: F.A. Davis Company.Google Scholar
  7. Fenwick, P. 1981. Precipitation and inhibition of seizures. In: E. Reynolds and M. Trimble (eds), Epilepsy and Psychiatry, pp. 306-321. London: Churchill Livingstone.Google Scholar
  8. Gloor, P. 1990. Experiential phenomena of temporal lobe epilepsy. Brain 113: 1673-1694.Google Scholar
  9. Freeman, W. J. 2000. Neurodynamics. New York: Springer Verlag.Google Scholar
  10. Jackson, J. H. 1888. On a particular variety of epilepsy (“intellectual aura”), one case with symptoms of organic brain disease. Brain 11: 179-207.Google Scholar
  11. Lennox, W. G. 1946. Science and Seizures: New Light on Epilepsy and Migraine. New York: Harper and Brothers.Google Scholar
  12. Lehnertz, K. and Elger, C. E. 1998. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Physical Review Letters 80: 5019-5022.Google Scholar
  13. Le Van Quyen, M., Adam, C., Lachaux, J. P., Martinerie, J., Baulac, M., Renault, B., and Varela, F. J. 1997a. Temporal patterns in human epileptic activity are modulated by perceptual discriminations. Neuroreport 8: 1703-1710.Google Scholar
  14. Le Van Quyen, M., Martinerie, J., Adam, C., and Varela, F. J. 1997b. Unstable periodic orbits in a human epileptic activity. Physical Review E, 56: 3401-3411.Google Scholar
  15. Le Van Quyen, M., Martinerie, J., Baulac, M., and Varela, F. J. 1999. Anticipating epileptic seizure in real time by a nonlinear analysis of similarity between EEG recordings. NeuroReport 10: 2149-2155.Google Scholar
  16. Le Van Quyen, M., Martinerie, J., Navarro, V., Boon, P., D'Havé, M., Adam, C., Renault, B., Varela, F., and Baulac, M. 2001a. Anticipation of epileptic seizures from standard EEG recordings. Lancet 357: 183-188.Google Scholar
  17. Le Van Quyen, M., Martinerie, J., Navarro, V., Baulac, M., and Varela, F. J. 2001b. Characterizing the neuro-dynamical changes prior to seizures. Journal of Clinical Neurophysiology 18: 191-208.Google Scholar
  18. Martinerie, J., Adam, C., Le Van Quyen, M., Baulac, M., Clémenceau, S., Renault, B., and Varela, F. J. 1998. Epileptic seizures can be anticipated by non-linear analysis. Nature Medicine 4: 1173-1176.Google Scholar
  19. McKenna, T. M., McMullen, T. A., and Shlesinger, M. F. 1994. The brain as a dynamic physical system. Neuroscience 60: 587-605.Google Scholar
  20. Morrell, F. 1989. Varieties of human secondary epileptogenesis. Journal of Clinical Neurophysiology 6: 227-275.Google Scholar
  21. Penfield, W. 1938. The cerebral cortex in man. I. The cerebral cortex and consciousness. Archives of Neurology and Psychiatry 40: 417-442.Google Scholar
  22. Penfield, W. and Jasper, H. 1954. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown.Google Scholar
  23. Rajna, P., Clemens, B., Csibri, E., Dobos, E., Geregely, A., Gottschal, M., György, I., Horvath, A., Horvath, F., Mezöfi, L., Velkey, I., Veres, J., and Wagner, E. 1997. Hungarian multicentre epidemiologic study of the warning and initial symptoms (prodrome, aura) of epileptic seizures. Seizure 6: 361-368.Google Scholar
  24. Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., and Varela, F. J. 1999. Perception's shadow: long-distance synchronization of human brain activity. Nature 397: 430-433.Google Scholar
  25. Schmid-Schönbein, C. 1998. Improvement of seizure control by psychological methods in patients with intractable epilepsies. Seizure 7: 261-270.Google Scholar
  26. Sterman, M. and Bowersox, S. S. 1981. Sensorimotor EEG rhythmic activity: a functional gate mechanism. Sleep 4: 408-422.Google Scholar
  27. Taken, F. 1981. Lecture Notes in Mathematics: Dynamical Systems and Turbulence. Berlin: Springer Verlag.Google Scholar
  28. Thompson, E. and Varela, F. J. 2001. Radical embodiment: neuronal dynamics and consciousness. Trends in Cognitive Sciences 5: 418-425.Google Scholar
  29. Varela, F. J. 1996. Neurophenomenology: a methodological remedy for the hard problem. Journal of Consciousness Studies 3: 330-350.Google Scholar
  30. Varela, F. J. 1999. The specious present. In: J. Petitot, F. J. Varela, B. Pachoud, J. M. Roy (eds), Naturalizing Phenomenology. Standford: Standford University Press.Google Scholar
  31. Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. 2001. The brain web: Phase synchronization and large-scale integration. Nature Reviews Neuroscience 2: 229-239.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Michel Le Van Quyen
    • 1
  • Claire Petitmengin
    • 2
  1. 1.Groupe de Neurodynamique, Laboratoire de Neurosciences Cognitives et Imagerie CérébraleHôpital de la Pitié-SalpêtrièreParisFrance
  2. 2.Institut National des TélécommunicationsEvryFrance

Personalised recommendations