Advertisement

Pharmaceutical Research

, Volume 19, Issue 9, pp 1362–1367 | Cite as

Evaluation of Pharmacokinetic Interaction Between Cyclosporin A and Probucol in Rats

  • Mari Jiko
  • Ikuko Yano
  • Hiroko Wakasugi
  • Hideyuki Saito
  • Ken-ichi Inui
Article

Abstract

Purpose. The purpose of this study was to clarify the mechanism of pharmacokinetic interaction between cyclosporin A and probucol in clinical cases.

Methods. The whole blood concentration of cyclosporin A was measured after oral administration of cyclosporin A with or without probucol in rats. Cyclosporin A was administered as three types of solutions: the contents of the conventional formulation (Sandimmun® capsule) diluted with corn oil and the contents of the new microemulsion preconcentrate formulation (Neoral® capsule) diluted with saline or corn oil. The solubility of cyclosporin A and another lipophilic agent tacrolimus in water with or without probucol was also measured.

Results. The area under the blood concentration-time curve (AUC) after the administration of Sandimmun® (corn oil) and Neoral® (corn oil) was significantly decreased to 26% and 41% of the control by coadministration of probucol. However in the case of Neoral® (saline), it was unchanged. The terminal elimination rate constant was not affected by probucol in any type of cyclosporin A solution. The solubility of cyclosporin A or tacrolimus in water dropped to 49% or 16% of the respective control in the presence of probucol.

Conclusion. The interaction between cyclosporin A and probucol is caused by the decreased absorption of cyclosporin A partly based on the lowered solubility in the presence of probucol.

cyclosporin A probucol drug interaction pharmacokinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Lindholm, S. Henricsson, M. Lind, and R. Dahlqvist. Intraindividual variability in the relative systemic availability of cyclosporin after oral dosing. Eur. J. Clin. Pharmacol. 34:461–464 (1988).Google Scholar
  2. 2.
    M. U. Mehta, R. Venkataramanan, G. J. Burckart, R. J. Ptacheinski, B. Delamos, S. Stachak, et al. Effect of bile on cyclosporin absorption in liver transplant patients. Br. J. Clin. Pharmacol 25:579–584 (1988).Google Scholar
  3. 3.
    S. K. Gupta, R. C. Manfro, S. J. Tomlanovich, J. G. Gambertoglio, M. R. Garovoy, and L. Z. Benet. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following oral and intravenous administration. J. Clin. Pharmacol. 30:643–653 (1990).Google Scholar
  4. 4.
    N. Balandraud-Pieri. P.-E. Queneau, F.-X. Caroli-Bosc, P. Bertault-Peres, A.-M. Montet, A. Durand, et al. Effects of tauroursodeoxycholate solutions on cyclosporin A bioavailability in rats. Drug Metab. Dispos. 25:912–916 (1997).Google Scholar
  5. 5.
    G. Opelz and B. Dohler. Cyclosporine and long-term kidney graft survival. Transplantation 72:1267–1273 (2001).Google Scholar
  6. 6.
    D. W. Holt, E. A. Mueller, J. M. Kovarik, J. B. van Bree, and K. Kutz. The pharmacokinetics of Sandimmun Neoral: a new oral formulation of cyclosporine. Transplant. Proc. 26:2935–2939 (1994).Google Scholar
  7. 7.
    D. W. Holt and A. Johnston. The impact of cyclosporin formulation on clinical outcomes. Transplant. Proc. 32:1552–1555 (2000).Google Scholar
  8. 8.
    L. C. Paul. Overview of side effects of immunosuppressive therapy. Transplant. Proc. 33:2089–2091 (2001).Google Scholar
  9. 9.
    J. M. M. Gijtenbeek, M. J. van den Bent, and C. J. Vecht. Cyclosporine neurotoxicity: a review. J. Neurol. 246:339–346 (1999).Google Scholar
  10. 10.
    V. Sundararajan, D. K. C. Cooper, J. Muchmore, C. V. Manion, C. Liguori, N. Zuhdi, et al. Interaction of cyclosporine and probucol in heart transplant patients. Transplant. Proc. 23:2028–2032 (1991).Google Scholar
  11. 11.
    C. Gallego, P. Sanchez, C. Planells, S. Sanchez, E. Monte, E. Roma, et al. Interaction between probucol and cyclosporine in renal transplant patients. Ann. Pharmacother. 28:940–943 (1994).Google Scholar
  12. 12.
    H. Wakasugi, M. Yoshimoto, M. Aoki, R. Osawa, T. Futami, T. Ono, et al. Effect of probucol on the concentration of cyclosporin A in patients with nephrotic syndrome. Jpn. J. Nephrol 43:595–599 (2001).Google Scholar
  13. 13.
    K. Sugimoto, K. Sakamoto, and A. Fujimura. Decrease in oral bioavailability of cyclosporin A by coadministration of probucol in rats. Life Sci. 60:173–179 (1997).Google Scholar
  14. 14.
    J. Drewe, C. Beglinger, and T. Kissel. The absorption site of cyclosporin in the human gastrointestinal tract. Br. J. Clin. Pharmacol. 33:39–43 (1992).Google Scholar
  15. 15.
    A. Fahr. Cyclosporin clinical pharmacokinetics. Clin. Pharmacokinet. 24:472–495 (1993).Google Scholar
  16. 16.
    J. Grevel. Significance of cyclosporine pharmacokinetics. Transplant. Proc. 20(suppl 2):428–434 (1988).Google Scholar
  17. 17.
    K. M. Wasan, P. H. Pritchard, M. Ramaswamy, W. Wong, E. M. Donnachie, and L. J. Brunner. Differences in lipoprotein lipid concentration and composition modify the plasma distribution of cyclosporine. Pharm. Res. 14:1613–1620 (1997).Google Scholar
  18. 18.
    T. Saeki, K. Ueda, Y. Tanigawara, R. Hori, and T. Komano. Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem. 268:6077–6080 (1993).Google Scholar
  19. 19.
    V. J. Wacher, L. Salphati, and L. Z. Benet. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Rev. 20:99–112 (1996).Google Scholar
  20. 20.
    T. Kronbach, V. Fischer, and U. A. Meyer. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin. Pharmacol. Ther. 43:630–635 (1988).Google Scholar
  21. 21.
    K. S. Lown, R. R. Mayo, A. B. Leichtman, H. Hsiao, K. Turgeon, P. Schmiedlin-Ren, et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin. Pharmacol. Ther. 62:248–260 (1997).Google Scholar
  22. 22.
    J. F. Heeg, M. F. Hiser, D. K. Satonin, and J. Q. Rose. Pharmacokinetics of probucol in male rats. J. Pharm. Sci. 73:1758–1763 (1984).Google Scholar
  23. 23.
    H. Arima, K. Yunomae, K. Miyake, T. Irie, F. Hirayama, and K. Uekama. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J. Pharm. Sci. 90:690–701 (2001).Google Scholar
  24. 24.
    E. A. Mueller, J. M. Kovarik, J. B. van Bree, J. Grevel, P. W. Lucker, and K. Kutz. Influence of a fat-rich meal on the pharmacokinetics of a new oral formulation of cyclosporine in a crossover comparison with the market formulation. Pharm. Res. 11: 151–155 (1994).Google Scholar
  25. 25.
    H. Iijima and G. Tokunaga. The change in plasma probucol levels on meal. The Clinical Report 26:1085–1087 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Mari Jiko
    • 1
  • Ikuko Yano
    • 1
  • Hiroko Wakasugi
    • 1
  • Hideyuki Saito
    • 1
  • Ken-ichi Inui
    • 1
  1. 1.Department of Pharmacy, Kyoto University Hospital, Faculty of MedicineKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations