Environmental Monitoring and Assessment

, Volume 80, Issue 1, pp 17–31

Comparative Studies on Accumulation of Cr from Metal Solution and Tannery Effluent under Repeated Metal Exposure by Aquatic Plants: Its Toxic Effects

Article

Abstract

The present study demonstrates comparison of Cr accumulatingpotential by the plants of Najas indica Cham. (submerged),Vallisneria spiralis L. (rooted submerged) and Alternanthera sessilis R. Br. (rooted emergent) under repeatedmetal exposure and its effect on chlorophyll and protein concentrations. These plants were treated with different concentrations of Cr under repeated exposure in controlled laboratory conditions to assess the maximum metal accumulationpotential. The plants of V. spiralis accumulated significantly high amount of Cr under laboratory conditions incomparison to N. indica and A. sessilis. The maximumaccumulation of 1378, 458 and 201 μg g-1 dw Cr was found in the leaves of V. spiralis, N. indica and A. sessilis, respectively at 8 mg L-1 after 9 day of Cr exposure. These plants have shown a decrease in chlorophyll andprotein concentrations with increase in Cr concentrations. In view of high accumulation of Cr in V. spiralis, the plantswere treated with different concentrations of tannery effluent collected from Common Effluent Treatment Plant, Unnao (UP). Theplants of V. spiralis treated with 100% tannery wastewatershowed the maximum accumulation (57.5 μg g-1 dw) of Cr in the roots after 10 days of exposure. The plants were foundeffective in removing Cr from solution and tannery effluent.

accumulation Alternanthera sessilis chromium Najas indica tannery effluent Vallisneria spiralis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APHA, AWWA: 1989, 'Standard methods for estimation of water and waste water', American Public Health Association, 17th ed., New York.Google Scholar
  2. Arnon, D. I.: 1949, 'Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulgaris', Plant Physiol. 24, 1–15Google Scholar
  3. Gomez, K. A. and Gomez, A. A.: 1984, Statistical Procedures for Agricultural Research, JohnWiley & Sons, New York.Google Scholar
  4. Gupta, M., Sinha, S. and Chandra, P.: 1994, 'Uptake and toxicity of metal in Scirpus lacustris L.', J. Environ. Sci. Health. 29, 2185–2202.Google Scholar
  5. Hoagland, D. and Arnon, D. L.: 1938, 'The water culture method for growing plants with out soil', Bull. Calif. Agric. Stat., 346.Google Scholar
  6. Jawahar, A. J. K., Chinnadurai, M., Ponsulvan, J. K. S. and Annadurai, G.: 1998, 'Pollution from tannieries and option for treatment of effluent', Ind. J. Environ. Protection 18, 672–678.Google Scholar
  7. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J.: 1951, 'Protein measurement with Folin-Phenol reagent', J. Biol. Chem. 193, 265–275.Google Scholar
  8. Qian, J.-H., Zayed, A., Zhu, Y.-L., Yu, M. and Terry, N.: 1999, 'Phytoaccumulation of trace elements by wetland plants. III. Uptake and accumulation of ten trace elements by twelve plant species', J. Environ. Qual. 28, 1448–1455.Google Scholar
  9. Rai, U. N., Tripathi, R. D., Sinha S. and Chandra, P.: 1995, 'Chromium and cadmium bioaccuumulation and toxicity in Hydrilla verticillata (l.f.) Royle and Chara corallina Wildenow', J. Environ. Sci. Health A30, 537–551.Google Scholar
  10. Raj, E. M., Sankaran, D. P., Sreenath, S. and Kumaran and Mohan, N.: 1996, 'Studies on treated effluent characteristics of a few tanneries at Chrompet', Ind. J. Environ. Protection 16, 252–254.Google Scholar
  11. Riedel, G. F.: 1989, 'In Aquatic Toxicology and Environmental Fate', in G. W. Suter II and M. A. Lewis 1 (eds), ASTM, STP, Vol. 11, pp. 537–548.Google Scholar
  12. Sharma, P. K. and Hall, D. O.: 1992, 'Changes in carotenoid composition and photosynthesis in Sorghum under high light and salt stress', Ind. J. Plant Physiol. 140, 661–666.Google Scholar
  13. Sinha, S. and Chandra P.: 1990 'Removal of Cu and Cr from water by Bacopa monnieri. L.', Water, Air, Soil Pollut. 5, 271–276.Google Scholar
  14. Sinha, S. Gupta, M. and Chandra, P.: 1994, 'Bioaccumulation and toxicity of Cu and Cd in Vallisneria spiralis (L.)', Environ. Monit. Assess. 33, 75–84.Google Scholar
  15. Sinha, S. Gupta, M. and Chandra, P.: 1996, 'Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri L', Environ. Toxicol. Wat. Qual. 11, 105–112.Google Scholar
  16. Sinha, S.: 1999, 'Accumulation of Cu, Cd, Cr, Mn and Pb from artificially contaminated soil by Bacopa monnieri', Environ. Monit. Assess. 57, 253–264.Google Scholar
  17. Smith, S., Peterson, P. J. and Kwan, K. H. M.: 1989, 'Chromium accumulation, transport and toxicity in plants', Toxicol. Environ. Chem. 24, 241–251.Google Scholar
  18. Vajpayee, P., Rai, U. N., Sinha, S., Tripathi, R. D. and Chandra, P.: 1995, 'Bioaccumulation of tannery effluent by aquatic macrophytes', Bull. Environ. Contam. Toxicol. 55, 546–553.Google Scholar
  19. Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S. and Singh, S. N.: 2001, 'Chromium induced physiological changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent', Bull. Environ. Contam. Toxicol. 67, 246–256.Google Scholar
  20. Zayed, A., Gowthaman, S. and Terry, N.: 1998, 'Phytoaccumulation of trace elements by wetlands plants: I. Duckweed', J. Environ. Qual. 27, 715–721.Google Scholar
  21. Zhu, Y.-L., Zayed, A. M., Qian, J.-H., De Souza, M. and Terry, N.: 1999, 'Phytoaccumulation of trace elements by wetlands plants: II. Water hyacinth', J. Environ. Qual. 28, 339–344.Google Scholar
  22. Zurayk, R., Sukkariyah, B. and Baalbaki, R.: 2001, 'Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution', Water, Air, Soil Pollut. 127, 373–388.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Ecotoxicology and Bioremediation, Environmental Sciences DivisionNational Botanical Research InstituteLucknowIndia

Personalised recommendations