Mammary Gland Immunity and Mastitis Susceptibility

  • Lorraine M. Sordillo
  • Katie L. Streicher
Article

Abstract

Lactation is considered the final phase of the mammalian reproductive cycle, and the mammary gland provides milk for nourishment and disease resistance to the newborn. However, the cellular and soluble immune components associated with mammary tissues and secretion also can play an important role in protecting the gland from infectious diseases, such as mastitis. Mastitis can affect essentially all lactating mammals, but is especially problematic for dairy cattle. The most recent estimates from the National Mastitis Council suggest that mastitis affects one third of all dairy cows and will cost the dairy industry over 2 billion dollars annually in the United States in lost profits (National Mastitis Council (1996) Current Concepts in Bovine Mastitis, National Mastitis Council, Madison, WI). The overall impact of mastitis on the quality and quantity of milk produced for human consumption has provided the impetus to better understand the pathophysiology of the mammary gland and develop ways to enhance disease resistance through immunoregulation. As such, the bovine species has played a critical and prominent role in our current understanding of mammary gland immunobiology. This paper provides a comprehensive overview of mammary gland immunity and how the stage of lactation can impact important host defenses. While this review emphasizes the bovine system, comparisons to humans and other domestic mammals will be addressed as well.

mammary immunology mastitis neutrophils lymphocytes cytokine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. I. Lehrer and T. Ganz (1999). Antimicrobial peptides in mammalian and insect host defence. Curr.Opin.Immunol. 11: 23–27.Google Scholar
  2. 2.
    E. Telemo and L.A. Hanson (1996). Antibodies in milk. J.Mam. Gland Biol.Neoplasia 1: 243–249.Google Scholar
  3. 3.
    D. Filipp, K. Alizadeh-Khiavi, C. Richardson, A. Palma, N. Paredes, O. Takeuchi, S. Akira, and M. Julius (2001). Sol-uble CD14 enriched in colostrum and milk induces B cell growth and differentiation. Proc.Natl.Acad.Sci.USA 98: 603–608.Google Scholar
  4. 4.
    L. M. Sordillo, K. Shafer-Weaver, and D. de Rosa (1997). Im-munobiology of the mammarygland. J.Dairy Sci. 80: 1851–1865.Google Scholar
  5. 5.
    L. A. Hanson (2000). The mother–offspring dyad and the im-mune system. Acta Paediatr. 89: 252–258.Google Scholar
  6. 6.
    L. Zhou, Y. Yoshimura, Y. Y. Huang, R. Suzuki, M. Yokoyama, M. Okabe, and M. Shimamura (2000). Two independent path-ways of maternal cell transmission to offspring: Through pla-centa during pregnancy and by breast-feeding after birth. Immunology 101: 570–580.Google Scholar
  7. 7.
    J. H. Nuijens, P. H. van Berkel, and F. L. Schanbacher (1996). Structure and biological actions of lactoferrin. J.Mam.Gland Biol.Neoplasia 1: 285–295.Google Scholar
  8. 8.
    B. L. Larson (1992). Immunoglobulins of the mammary secre-tions. In P. F. Fox (ed.), Advanced Dairy Chemistry, Vol: 1 Pro-teins, Elsevier, London, pp. 231–254.Google Scholar
  9. 9.
    W. Hunziker and J. P. Kraehenbuhl (1998). Epithelial transcyto-sis of immunoglobulins. J.Mam.Gland Biol.Neoplasia 3: 287–302.Google Scholar
  10. 10.
    E. C. Butcher and L. J. Picker (1996). Lymphocyte homing and homeostasis. Science 272: 60–66.Google Scholar
  11. 11.
    F. E. Johansen, R. Braathen, and P. Brandtzaeg (2000). Role of J chain in secretory immunoglobulin formation. Scand.J. Immunol. 52: 240–248.Google Scholar
  12. 12.
    F. E. Johansen, M. Pekna, I. N. Norderhaug, B. Haneberg, M. A. Hietala, P. Krajci, C. Betsholtz, and P. Brandtzaeg (1999). Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglob-ulin receptor/secretory component-deficient mice. J.Exp.Med. 190: 915–922.Google Scholar
  13. 13.
    G. M. Barrington, T. B. McFaden, M. T. Huyler, and T. E. Besser (2001). Regulation of colostrogenesis in cattle. Livestock Prod. Sci. 70: 95–104.Google Scholar
  14. 14.
    E. J. Israel, V. K. Patel, S. F. Taylor, A. Marshak-Rothstein, and N. E. Simister (1995). Requirement for a beta 2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J.Immunol. 154: 6246–6251.Google Scholar
  15. 15.
    D. Velin, H. Acha-Orbea, and J. P. Kraehenbuhl (1996). The neonatal Fc receptor is not required for mucosal infection by mouse mammary tumor virus. J.Virol. 70: 7250–7254.Google Scholar
  16. 16.
    G. M. Barrington, T. E. Besser, W. C. Davis, C. C. Gay, J. J. Reeves, and T. B. McFadden (1997). Expression of im-munoglobulin G1receptors by bovine mammaryepithelial cells and mammary leukocytes. J.Dairy Sci. 80: 86–93.Google Scholar
  17. 17.
    G. M. Barrington, T. E. Besser, C. C. Gay, W. C. Davis, J. J. Reeves, and T. B. McFadden (1997). Effect of prolactin on in vitro expression of the bovine mammary immunoglobulin G1 receptor. J.Dairy Sci. 80: 94–100.Google Scholar
  18. 18.
    C. L. Lamprecht, H. E. Krause, and M. A. Mufson (1976). Role of maternal antibody in pneumonia and bronchiolitis due to respiratory syncytial virus. J.Infect.Dis. 134: 211–217.Google Scholar
  19. 19.
    L. Enjuanes and B. A. M. van der Zeijst (1995). Molecular ba-sis of transmissible gastroenteritis virus epidemiology. In S. G. Siddell (ed.), The Coronaviridae, Plenum Press, New York, pp. 337–376.Google Scholar
  20. 20.
    M. C. Jenkins, C. O'Brien, J. Trout, A. Guidry, and R. Fayer (1999). Hyperimmune bovine colostrum specific for recombi-nant Cryptosporidium parvum antigen confers partial protec-tion against cryptosporidiosis in immunosuppressed adult mice. Vaccine 17: 2453–2460.Google Scholar
  21. 21.
    W. Stephan, H. Dichtelmuller, and R. Lissner (1990). Antibod-ies from colostrum in oral immunotherapy. J.Clin.Chem.Clin. Biochem. 28: 19–23.Google Scholar
  22. 22.
    H. Korhonen, P. Marnila, and H. S. Gill (2000). Milk im-munoglobulins and complement factors. Br.J.Nutr. S75–S80.Google Scholar
  23. 23.
    H. Korhonen, P. Marnila, and H. S. Gill (2000). Bovine milk antibodies for health. Br.J.Nutr. S135–S146.Google Scholar
  24. 24.
    V. Loimaranta, J. Nuutila, P. Marnila, J. Tenovuo, H. Korhonen, and E. M. Lilius (1999). Colostral proteins from cows immu-nised with Streptococcus mutans/S. sobrinus support the phago-cytosis and killing of mutans streptococci by human leucocytes. J.Med.Microbiol. 48: 917–926.Google Scholar
  25. 25.
    Y. Okamoto, H. Tsutsumi, N. S. Kumar, and P. L. Ogra (1989). Effect of breast feeding on the development of anti-idiotype antibody response to F glycoprotein of respiratory syncytial virus in infant mice after post-partum maternal immunization. J.Immunol. 142: 2507–2512.Google Scholar
  26. 26.
    D. P. Pollock, J. P. Kutzko, E. Birck-Wilson, J. L. Williams, Y. Echelard, and H. M. Meade (1999). Transgenic milk as a method for the production of recombinant antibodies. J.Immunol.Methods 231: 147–157.Google Scholar
  27. 27.
    I. Sola, J. Castilla, B. Pintado, J. M. Sanchez-Morgado, C. B. Whitelaw, A. J. Clark, and L. Enjuanes. (1998). Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J.Virol. 72: 3762–3772.Google Scholar
  28. 28.
    P. Zhang, V. Sawicki, A. Lewis, L. Hanson, J. H. Nuijens, and M. C. Neville (2001). Human lactoferrin in the milk of trans-genic mice increases intestinal growth in ten-day-old suckling neonates. Adv.Exp.Med.Biol. 501: 107–113.Google Scholar
  29. 29.
    G. J. Platenburg, E. P. Kootwijk, P. M. Kooiman, S. L. Woloshuk, J. H. Nuijens, P. J. Krimpenfort, F. R. Pieper, H. A. de Boer, and R. Strijker (1994). Expression of human lactoferrin in milk of transgenic mice. Transgenic Res. 3: 99–108.Google Scholar
  30. 30.
    S. J. Kim, B. H. Sohn, S. Jeong, K. W. Pak, J. S. Park, I. Y. Park, T. H. Lee, Y. H. Choi, C. S. Lee, Y. M. Han, D. Y. Yu, and K. K. Lee (1999). High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J.Biochem.(Tokyo) 126: 320–325.Google Scholar
  31. 31.
    S. Yarus, J. M. Rosen, A. M. Cole, and G. Diamond (1996). Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc.Natl.Acad.Sci.USA 93: 14118–14121.Google Scholar
  32. 32.
    E. A. Maga, G. B. Anderson, and J. D. Murray (1995). The effect of mammary gland expression of human lysozyme on the properties of milk from transgenic mice. J.Dairy Sci. 78: 2645–2652.Google Scholar
  33. 33.
    E. A. Maga, G. B. Anderson, J. S. Cullor, W. Smith, and J. D. Murray (1998). Antimicrobial properties of human lysozyme transgenic mouse milk. J.Food Prot. 61: 52–56.Google Scholar
  34. 34.
    D. E. Kerr, K. Plaut, A. J. Bramley, C. M. Williamson, A. J. Lax, K. Moore, K. D. Wells, and R. J. Wall (2001). Lysostaphin ex-pression in mammary glands confers protection against staphy-lococcal infection in transgenic mice. Nat.Biotechnol. 19: 66–70.Google Scholar
  35. 35.
    A. F. Kolb, L. Pewe, J. Webster, S. Perlman, C. B. Whitelaw, and S. G. Siddell (2001). Virus-neutralizing monoclonal antibody expressed in milk of transgenic mice provides full protection against virus-induced encephalitis. J.Virol. 75: 2803–2809.Google Scholar
  36. 36.
    A. J. Clark, A. Cowper, R. Wallace, G. Wright, and J. P. Simons (1992). Rescuing transgene expression by co-integration. Biotechnology 10: 1450–1454.Google Scholar
  37. 37.
    K. W. Dobie, M. Lee, J. A. Fantes, E. Graham, A. J. Clark, A. Springbett, R. Lathe, and M. McClenaghan (1996). Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc.Natl.Acad.Sci.USA 93: 6659–6664.Google Scholar
  38. 38.
    A. F. Kolb, R. Ansell, J. McWhir, and S. G. Siddell (1999). In-sertion of a foreign gene into the beta-casein locus by Cre-mediated site-specific recombination. Gene 227: 21–31.Google Scholar
  39. 39.
    N. de Groot, P. van Kuik-Romeijn, S. H. Lee, and H. A. de Boer (2000). Increased immunoglobulin A levels in milk by over-expressing the murine polymeric immunoglobulin recep-tor gene in the mammary gland epithelial cells of transgenic mice. Immunology 101: 218–224.Google Scholar
  40. 40.
    P. A. Furth (1997). Conditional control of gene expression in the mammary gland. J.Mam.Gland Biol.Neoplasia 2: 373–383.Google Scholar
  41. 41.
    S. Soulier, M. G. Stinnakre, L. Lepourry, J. C. Mercier, and J. L. Vilotte (1999). Use of doxycycline-controlled gene expression to reversibly alter milk-protein composition in transgenic mice. Eur.J.Biochem. 260: 533–539.Google Scholar
  42. 42.
    A. Jakobovits (1995). Production of fully human antibodies by transgenic mice. Curr.Opin.Biotechnol. 6: 561–566.Google Scholar
  43. 43.
    K. Tomizuka, T. Shinohara, H. Yoshida, H. Uejima, A. Ohguma, S. Tanaka, K. Sato, M. Oshimura, and I. Ishida (2000). Double trans-chromosomic mice: Maintenance of two individ-ual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc.Natl. Acad.Sci.USA 97: 722–727.Google Scholar
  44. 44.
    A. Jakobovits (1998). Production and selection of antigen-specific fully human monoclonal antibodies from mice engi-neered with human Ig loci. Adv.Drug Deliv.Rev. 31: 33–42.Google Scholar
  45. 45.
    D. S. Newburg (1996). Oligosaccharides and glycoconjugates in human milk: Their role in host defense. J.Mam.Gland Biol. Neoplasia 1: 271–283.Google Scholar
  46. 46.
    A. S. Goldman, S. Chheda, R. Garofalo, and F. C. Schmalstieg (1996). Cytokines in human milk: Properties and potential ef-fects upon the mammary gland and the neonate. J.Mam.Gland Biol.Neoplasia 1: 251–258.Google Scholar
  47. 47.
    P. M. Hwang, N. Zhou, X. Shan, C. H. Arrowsmith, and H. J. Vogel (1998). Three-dimensional solution structure of lacto-ferricin B, an antimicrobial peptide derived from bovine lacto-ferrin. Biochemistry 37: 4288–4298.Google Scholar
  48. 48.
    S. Baveye, E. Elass, J. Mazurier, G. Spik, and D. Legrand (1999). Lactoferrin: A multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin.Chem.Lab.Med. 37: 281–286.Google Scholar
  49. 49.
    B. W. van der Strate, L. Beljaars, G. Molema, M. C. Harmsen, and D. K. Meijer (2001). Antiviral activities of lactoferrin. An-tiviral Res. 52: 225–239.Google Scholar
  50. 50.
    P. Valenti, R. Greco, G. Pitari, P. Rossi, M. Ajello, G. Melino, and G. Antonini (1999). Apoptosis of Caco-2 intestinal cells invaded by Listeria monocytogenes: Protective effect of lacto-ferrin. Exp.Cell Res. 250: 197–202.Google Scholar
  51. 51.
    T. Wada, Y. Aiba, K. Shimizu, A. Takagi, T. Miwa, and Y. Koga (1999). The therapeutic effect of bovine lactoferrin in the host infected with Helicobacter pylori. Scand.J.Gastroenterol. 34: 238–243.Google Scholar
  52. 52.
    L. A. Hanson (1998). Breastfeeding provides passive and likely long-lasting active immunity. Ann.Allergy Asthma Immunol. 81: 523–533.Google Scholar
  53. 53.
    A. F. Kolb (2001). The prospects of modifying the antimicrobial properties of milk. Biotechn.Adv. 19: 299–316.Google Scholar
  54. 54.
    L. Edde, R. B. Hipolito, F. F. Hwang, D. R. Headon, R. A. Shalwitz, and M. P. Sherman (2001). Lactoferrin protects neonatal rats from gut-related systemic infection. Am.J.Phys-iol. Gastrointest.Liver Physiol. 281: G1140–G1150.Google Scholar
  55. 55.
    L. H. Hanson, V. Sawicki, A. Lewis, J. H. Nuijens, M. C. Neville, and P. Zhang (2001). Does human lactoferrin in the milk of transgenic mice deliver iron to suckling neonates? Adv.Exp. Med.Biol. 501: 233–239.Google Scholar
  56. 56.
    P. Krimpenfort, A. Rademakers, W. Eyestone, A. van der Schans, S. van den Broek, P. Kooiman, E. Kootwijk, G. Platenburg, F. Pieper, R. Strijker, and H. A. de Boer (1991). Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (NY) 9: 844–847.Google Scholar
  57. 57.
    P. M. Hwang and H. J. Vogel (1998). Structure–function rela-tionships of antimicrobial peptides. Biochem.Cell Biol. 76: 235–246.Google Scholar
  58. 58.
    W. Bellamy, M. Takase, H. Wakabayashi, K. Kawase, and M. Tomita (1992). Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J.Appl.Bacteriol. 73: 472–479.Google Scholar
  59. 59.
    H. Ulvatne, H. H. Haukland, O. Olsvik, and L. H. Vorland (2001). Lactoferricin B causes depolarization of the cytoplas-mic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett. 492: 62–65.Google Scholar
  60. 60.
    R. Drews, R. K. Paleyanda, T. K. Lee, R. R. Chang, A. Rehemtulla, R. J. Kaufman, W. N. Drohan, and H. Lubon (1995). Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. Proc.Natl.Acad. Sci.USA 92: 10462–10466.Google Scholar
  61. 61.
    H. D. Zucht, M. Raida, K. Adermann, H. J. Magert, and W. G. Forssmann (1995). Casocidin-I: Acasein-alpha s2 derived peptide exhibits antibacterial activity. FEBS Lett. 372: 185–188.Google Scholar
  62. 62.
    I. Recio and S. Visser (1999). Identification of two distinct an-tibacterial domains within the sequence of bovine alpha(s2)-casein. Biochim.Biophys.Acta 1428: 314–326.Google Scholar
  63. 63.
    A. Pellegrini, U. Thomas, N. Bramaz, P. Hunziker, and R. von Fellenberg (1999). Isolation and identification of three bac-tericidal domains in the bovine alpha-lactalbumin molecule. Biochim.Biophys.Acta 1426: 439–448.Google Scholar
  64. 64.
    E. Lahov and W. Regelson (1996). Antibacterial and immuno-stimulating casein-derived substances from milk: Casecidin, is-racidin peptides. Food Chem.Toxicol. 34: 131–145.Google Scholar
  65. 65.
    H. P. Jia, T. Starner, M. Ackermann, P. Kirby, B. F. Tack, and P. B. J. McCray (2000). Abundant human beta-defensin-1 ex-pression in milk and mammary gland epithelium. J.Pediatr. 138: 109–112.Google Scholar
  66. 66.
    A. Tossi, C. Tarantino, and D. Romeo (1997). Design of syn-thetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur.J.Biochem. 250: 549–558.Google Scholar
  67. 67.
    P. Tzou, E. de Gregorio, and B. Lemaitre (2002). How Drosophila combats microbial infection: A model to study in-nate immunity and host–pathogen interactions. Curr.Opin. Microbiol. 5: 102–110.Google Scholar
  68. 68.
    B. C. Schutte, J. P. Mitros, J. A. Bartlett, J. D. Walters, H. P. Jia, M. J. Welsh, T. L. Casavant, and P. B. J. McCray (2002). Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc.Natl.Acad.Sci.USA 99: 2129–2133.Google Scholar
  69. 69.
    M. Hamosh (1998). Protective function of proteins and lipids in human milk. Biol.Neonate 74: 163–176.Google Scholar
  70. 70.
    K. D. Kussendrager and A. C. van Hooijdonk (2000). Lactoper-oxidase: Physico-chemical properties, occurrence, mechanism of action and applications. Br.J.Nutr. S19–S25.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Lorraine M. Sordillo
    • 1
  • Katie L. Streicher
    • 1
  1. 1.Department of Veterinary ScienceThe Pennsylvania State UniversityUniversity Park

Personalised recommendations