Geometriae Dedicata

, Volume 93, Issue 1, pp 1–10 | Cite as

Uniqueness of Noncompact Spacelike Hypersurfaces of Constant Mean Curvature in Generalized Robertson–Walker Spacetimes

  • José M. Latorre
  • Alfonso Romero


On any spacelike hypersurface of constant mean curvature of a Generalized Robertson–Walker spacetime, the hyperbolic angle θ between the future-pointing unit normal vector field and the universal time axis is considered. It is assumed that θ has a local maximum. A physical consequence of this fact is that relative speeds between normal and comoving observers do not approach the speed of light near the maximum point. By using a development inspired from Bochner's well-known technique, a uniqueness result for spacelike hypersurfaces of constant mean curvature under this assumption on θ, and also assuming certain matter energy conditions hold just at this point, is proved.

Bochner–Lichnerowicz's formula Constant mean curvature GRW spacetime spacelike hypersurface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alías, L. J., Estudillo, F. J. M. and Romero, A.: On the Gaussian curvature of maximal surfaces in n-dimensional generalized Robertson—Walker spacetimes, Classical Quantum Gravity 13 (1996), 3211–3219.Google Scholar
  2. 2.
    Alías, L. J., Romero, A. and Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized Robertson—Walker spacetimes, General Relativity Gravitation 27 (1995), 71–84.Google Scholar
  3. 3.
    Alías, L. J., Romero, A. and Sánchez, M.: Spacelike hypersurfaces of constant mean curvature and Calabi—Bernstein type problems, Tôhoku Math J. 49 (1997), 337–345.Google Scholar
  4. 4.
    Alías, L. J., Romero, A. and Sánchez, M.: Spacelike hypersurfaces of constant mean curvature in certain spacetimes, Nonlinear Anal. 30 (1997), 655–661.Google Scholar
  5. 5.
    Barbosa, J. L. M. and Oliker, V.: Stable spacelike hypersurfaces with constant mean curvature in Lorentz space, In: Geometry and Global Analysis, First MSJ Internat. Res. Inst., Tô hoku Univ., 1993, pp. 161–164.Google Scholar
  6. 6.
    Beem, J. K., Ehrlich, P. E. and Easley, K. L.: Global Lorentzian Geometry, 2nd edn, Pure Appl. Math. 202, Dekker, New York, 1996.Google Scholar
  7. 7.
    Chavel, I.: Eigenvalues in Riemannian Geometry, Pure Appl. Math. 115, Academic Press, New York, 1984.Google Scholar
  8. 8.
    Choquet-Bruhat, Y.: The problem of constraints in General Relativity: solution of the Lichnerowicz equation, Differential Geometry and Relativity, Math. Phys. Appl. Math. 3, D. Reidel, Dordrecht, 1976, pp. 225–235.Google Scholar
  9. 9.
    Do Carmo, M. P.: Geometria Riemanniana, IMPA, Projeto Euclides 10, 1979.Google Scholar
  10. 10.
    Harris, S. G.: Closed and complete spacelike hypersurfaces in Minkowski space, Classical Quantum Gravity 5 (1988), 111–119.Google Scholar
  11. 11.
    Harris, S. G. and Low, R. J.: Causal monotonicity, omniscient foliations, and the shape of the space, Preprint (2001).Google Scholar
  12. 12.
    Lichnerowicz, A.: L'integration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl. 23 (1944), 37–63.Google Scholar
  13. 13.
    Marsden, J. E. and Tipler, F. J.: Maximal hypersurfaces and foliations of constant mean curvature in General Relativity, Phys. Rep. 66 (1980), 109–139.Google Scholar
  14. 14.
    O'Murchadha, N. and York, J.: Initial-value problem of General Relativity. I. General formulation and physical interpretation, Phys. Rev. D 10 (1974), 428–436.Google Scholar
  15. 15.
    O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.Google Scholar
  16. 16.
    Rainer, M. and Schmidt, H.-J.: Inhomogeneous cosmological models with homogeneous inner hypersurface geometry, General Relativity Gravitation 27 (1995), 1265–1293.Google Scholar
  17. 17.
    Romero, A. and Sánchez, M.: On completeness of certain families of semi-Riemannian manifolds, Geom. Dedicata 53 (1994), 103–117.Google Scholar
  18. 18.
    Sachs, R. K. and Wu, H.: General Relativity for Mathematicians, Grad. Texts Math., Springer-Verlag, New York, 1977.Google Scholar
  19. 19.
    Sánchez, M.: On the geometry of generalized Robertson—Walker spacetimes: Geodesics, General Relativity Gravitation 30 (1998), 915–932.Google Scholar
  20. 20.
    Tipler, F. J.: Causally symmetric spacetimes, J. Math. Phys. 18 (1977), 1568–1573.Google Scholar
  21. 21.
    Wu, H.: A remark on the Bochner technique in differential geometry, Proc. Amer. Math. Soc. 78 (1980), 403–408.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • José M. Latorre
    • 1
  • Alfonso Romero
    • 1
  1. 1.Departamento de Geometría y Topología, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations